Search results for " CIRCUIT"
showing 10 items of 634 documents
Hidden and self-excited attractors in radiophysical and biophysical models
2017
One of the central tasks of investigation of dynamical systems is the problem of analysis of the steady (limiting) behavior of the system after the completion of transient processes, i.e., the problem of localization and analysis of attractors (bounded sets of states of the system to which the system tends after transient processes from close initial states). Transition of the system with initial conditions from the vicinity of stationary state to an attractor corresponds to the case of a self-excited attractor. However, there exist attractors of another type: hidden attractors are attractors with the basin of attraction which does not have intersection with a small neighborhoods of any equ…
Analytical-numerical methods for investigation of hidden oscillations in nonlinear control systems
2011
The method of harmonic linearization, numerical methods, and the applied bifurcation the- ory together discover new opportunities for analysis of oscillations of control systems. In the present survey analytical-numerical algorithms for hidden oscillation localization are discussed. Examples of hidden attrac- tor localization in Chua's circuit and counterexamples construction to Aizerman's conjecture and Kalman's conjecture are considered.
Analytical-numerical methods for finding hidden oscillations in dynamical systems
2012
Coherence resonance in Bonhoeffer-Van der Pol circuit
2009
International audience; A nonlinear electronic circuit simulating the neuronal activity in a noisy environment is proposed. This electronic circuit is exactly ruled by the set of Bonhoeffer-Van Der Pol equations and is excited with a Gaussian noise. Without external deterministic stimuli, it is shown that the circuit exhibits the so-called 'coherence resonance' phenomenon.
A delay time bound for distributed parameter circuits with bipolar transistors
1990
We prove here a stability theorem concerning a parabolic system of equations with non-linear boundary conditions that governs the behaviour of a class of networks in which the bipolar transistors operating under large-signal conditions are interconnected with reg-lines modelled by telegraph equations
A nonlinear electronic circuit mimicking the neuronal activity in presence of noise
2013
We propose a nonlinear electronic circuit simulating the neuronal activity in a noisy environment. This electronic circuit is ruled by the set of Bonhaeffer-Van der Pol equations and is excited with a white gaussian noise, that is without external deterministic stimuli. Under these conditions, our circuits reveals the Coherence Resonance signature, that is an optimum of regularity in the system response for a given noise intensity.
Circuit Lower Bounds via Ehrenfeucht-Fraisse Games
2006
In this paper we prove that the class of functions expressible by first order formulas with only two variables coincides with the class of functions computable by AC/sup 0/ circuits with a linear number of gates. We then investigate the feasibility of using Ehrenfeucht-Fraisse games to prove lower bounds for that class of circuits, as well as for general AC/sup 0/ circuits.
Rigorous Multimode Equivalent Network Representation of Multilayer Planar Circuits
2018
The objective of this paper is to extend the use of the Multimode Equivalent Network formulation, originally developed to analyze waveguide junctions, to the analysis of planar circuits that include arbitrary rectangular printed, zero thickness metallizations together with internal and external ports in the transverse plane. The theoretical derivations lead to an accurate and computationally efficient tool for the analysis of boxed, multilayer microwave printed circuits. In addition to theory, the tool developed is used here to analyze two practical examples: a dual-bandpass and a 4-pole bandpass boxed microstrip filters. Good agreement with respect to commercial software tools and measurem…
Boolean Functions with a Low Polynomial Degree and Quantum Query Algorithms
2005
The complexity of quantum query algorithms computing Boolean functions is strongly related to the degree of the algebraic polynomial representing this Boolean function. There are two related difficult open problems. First, Boolean functions are sought for which the complexity of exact quantum query algorithms is essentially less than the complexity of deterministic query algorithms for the same function. Second, Boolean functions are sought for which the degree of the representing polynomial is essentially less than the complexity of deterministic query algorithms. We present in this paper new techniques to solve the second problem.
Assessment of the Current for a Non-Linear Power Inductor Including Temperature in DC-DC Converters
2023
A method for estimating the current flowing through a non-linear power inductor operating in a DC/DC converter is proposed. The knowledge of such current, that cannot be calculated in closed form as for the linear inductor, is crucial for the design of the converter. The proposed method is based on a third-order polynomial model of the inductor, already developed by the authors; it is exploited to solve the differential equation of the inductor and to implement a flux model in a circuit simulator. The method allows the estimation of the current up to saturation, intended as the point at which the differential inductance is reduced to half of its maximum value. The current profile depends al…