Search results for " Cannabinoid"

showing 10 items of 163 documents

Cannabinoid receptor 1 modulates the autophagic flux independent of mTOR- and BECLIN1-complex

2013

Cannabinoid Receptor 1 (CB1) has been initially described as the receptor for Delta-9-Tetrahydrocannabinol in the central nervous system (CNS), mediating retrograde synaptic signaling of the endocannabinoid system. Beside its expression in various CNS regions, CB1 is ubiquituous in peripheral tissues, where it mediates, among other activities, the cell's energy homeostasis. We sought to examine the role of CB1 in the context of the evolutionarily conserved autophagic machinery, a main constituent of the regulation of the intracellular energy status. Manipulating CB1 by siRNA knockdown in mammalian cells caused an elevated autophagic flux, while the expression of autophagy-related genes rema…

Cannabinoid receptorMorpholinesGreen Fluorescent ProteinsDown-RegulationmTORC1NaphthalenesBiochemistryMiceCellular and Molecular NeurosciencePiperidinesReceptor Cannabinoid CB1RimonabantAutophagymedicineAnimalsHumansEnzyme InhibitorsCannabinoid Receptor AntagonistsCells CulturedPI3K/AKT/mTOR pathwayAdenine NucleotidesChemistryTOR Serine-Threonine KinasesAutophagyMembrane ProteinsCalcium Channel BlockersEmbryo MammalianEndocannabinoid systemBenzoxazinesCell biologyMice Inbred C57BLnervous systemAstrocytesPyrazolesBeclin-1lipids (amino acids peptides and proteins)MacrolidesSynaptic signalingRimonabantApoptosis Regulatory ProteinsFlux (metabolism)medicine.drugJournal of Neurochemistry
researchProduct

Circuit Specific Functions of Cannabinoid CB1 Receptor in the Balance of Investigatory Drive and Exploration

2011

Well balanced novelty seeking and exploration are fundamental behaviours for survival and are found to be dysfunctional in several psychiatric disorders. Recent studies suggest that the endocannabinoid (eCB) system is an important control system for investigatory drive. Pharmacological treatment of rodents with cannabinergic drugs results in altered social and object investigation. Interestingly, contradictory results have been obtained, depending on the treatment, drug concentration and experimental conditions. The cannabinoid type 1 (CB1) receptor, a central component of the eCB system, is predominantly found at the synapses of two opposing neuronal populations, i.e. on inhibitory GABAerg…

Cannabinoid receptorMousemedicine.medical_treatmentScienceGlutamic AcidNeural HomeostasisMice TransgenicBiologyMedium spiny neuronSynaptic Transmissiongamma-Aminobutyric acidGlutamatergicBehavioral NeuroscienceMiceModel OrganismsReceptor Cannabinoid CB1medicineGeneticsAnimalsGABAergic NeuronsSocial BehaviorBiologygamma-Aminobutyric AcidPsychiatryNeuronsMultidisciplinaryBehavior AnimalMood DisordersQRAnimal ModelsNeurotransmittersEndocannabinoid systemMice Inbred C57BLMental Healthnervous systemDopamine receptorMaladjustmentExploratory BehaviorGABAergicMedicineCannabinoidNeuroscienceAnimal Geneticsmedicine.drugResearch ArticleNeurosciencePLoS ONE
researchProduct

Co-expression of the voltage-gated potassium channel Kv1.4 with transient receptor potential channels (TRPV1 and TRPV2) and the cannabinoid receptor …

2006

Potassium channels contribute to basic neuronal excitability and modulation. Here, we examined expression patterns of the voltage-gated potassium channel Kv1.4, the nociceptive transduction channels TRPV1 and TRPV2 as well as the putative anti-nociceptive cannabinoid receptor CB1 by immunofluorescence double-labelings in sections of rat dorsal root ganglia (DRGs). Kv1.4, TRPV1 and CB1 were each detected in about one third of neurons (35.7+/-0.5%, 29.4+/-1.1% and 36.4+/-0.5%, respectively, mean diameter 19.1+/-0.3 microm). TRPV2 was present in 4.4+/-0.4% of all neurons that were significantly larger in diameter (27.4+/-0.7 microm; P < 0.001). Antibody double-labeling revealed that the majori…

Cannabinoid receptorTRPV2Blotting WesternTRPV1TRPV Cation ChannelsCell CountRats Sprague-DawleyTransient receptor potential channelDorsal root ganglionReceptor Cannabinoid CB1Ganglia SpinalmedicineAnimalsCells CulturedIn Situ HybridizationNeuronsChemistrymusculoskeletal neural and ocular physiologyGeneral NeuroscienceVoltage-gated potassium channelMolecular biologyImmunohistochemistryPotassium channelSensory neuronRatsmedicine.anatomical_structureShal Potassium Channelsnervous systemlipids (amino acids peptides and proteins)Neurosciencepsychological phenomena and processesNeuroscience
researchProduct

The endocannabinoid system in anxiety, fear memory and habituation.

2011

Evidence for the involvement of the endocannabinoid system (ECS) in anxiety and fear has been accumulated, providing leads for novel therapeutic approaches. In anxiety, a bidirectional influence of the ECS has been reported, whereby anxiolytic and anxiogenic responses have been obtained after both increases and decreases of the endocannabinoid tone. The recently developed genetic tools have revealed different but complementary roles for the cannabinoid type 1 (CB1) receptor on GABAergic and glutamatergic neuronal populations. This dual functionality, together with the plasticity of CB1 receptor expression, particularly on GABAergic neurons, as induced by stressful and rewarding experiences…

Cannabinoid receptormedicine.drug_classclassical conditioninggamma-aminobutyric acidglutamateAnxietyAnxiolyticstressReceptor Cannabinoid CB1MemoryCannabinoid Receptor ModulatorsmedicineAnimalsHumansneuronal plasticityPharmacology (medical)HabituationendocannabinoidsHabituation PsychophysiologicPharmacologyExtinction (psychology)FearArticleshabituationEndocannabinoid systemPsychiatry and Mental healthAnxiogenicnervous systemcannabinoid CB1 receptorAnxietyMemory consolidationlipids (amino acids peptides and proteins)medicine.symptomPsychologyNeuroscienceJournal of psychopharmacology (Oxford, England)
researchProduct

Increased endocannabinoid levels reduce the development of precancerous lesions in the mouse colon

2007

Colorectal cancer is an increasingly important cause of death in Western countries. Endocannabinoids inhibit colorectal carcinoma cell proliferation in vitro. In this paper, we investigated the involvement of endocannabinoids on the formation of aberrant crypt foci (ACF, earliest preneoplastic lesions) in the colon mouse in vivo. ACF were induced by azoxymethane (AOM); fatty acid amide hydrolase (FAAH) and cannabinoid receptor messenger ribonucleic acid (mRNA) levels were analyzed by the quantitative reverse transcription polymerase chain reaction (RT-PCR); endocannabinoid levels were measured by liquid chromatography-mass spectrometry; caspase-3 and caspase-9 expressions were measured by W…

Cannabinoid receptormedicine.medical_treatment2-Arachidonoylglycerolpreneoplastic lesionsMass Spectrometrychemistry.chemical_compoundMice0302 clinical medicineFatty acid amide hydrolaseDrug DiscoveryFatty acid amide hydrolase (FAAH)Aberrant crypt fociGenetics(clinical)ReceptorReceptors CannabinoidGenetics (clinical)Medicine(all)0303 health sciencesCaspase 3Reverse Transcriptase Polymerase Chain ReactionEndocannabinoid systemCaspase 93. Good health2-arachidonoylglycerolColon cancer030220 oncology & carcinogenesisColonic NeoplasmsMolecular Medicinelipids (amino acids peptides and proteins)psychological phenomena and processesRapid CommunicationAberrant crypt focimedicine.medical_specialtyColonAzoxymethaneBiologydigestive systemAmidohydrolases03 medical and health sciencesInternal medicineCannabinoid Receptor ModulatorsmedicineAnimalsRNA MessengerCannabinoid receptors030304 developmental biologyAzoxymethaneendocannabinoiddigestive system diseasesEndocrinologychemistrynervous systemCancer researchCannabinoidcancer pharmacologyPrecancerous ConditionsEndocannabinoids
researchProduct

Cell type‐specific genetic reconstitution of CB1 receptor subsets to assess their role in exploratory behaviour, sociability, and memory

2021

Several studies support the notion that exploratory behaviour depends on the functionality of the cannabinoid type 1 (CB1) receptor in a cell type-specific manner. Mice lacking the CB1 receptor in forebrain GABAergic or dorsal telencephalic glutamatergic neurons have served as essential tools revealing the necessary CB1 receptor functions in these two neuronal populations. However, whether these specific CB1 receptor populations are also sufficient within the endocannabinoid system for wild-type-like exploratory behaviour has remained unknown. To evaluate cell-type-specific sufficiency of CB1 receptor signalling exclusively in dorsal telencephalic glutamatergic neurons (Glu-CB1-RS) or in fo…

Cannabinoid receptormedicine.medical_treatmentBiologyMice03 medical and health sciencesGlutamatergic0302 clinical medicineReceptor Cannabinoid CB1medicineAnimalsGABAergic NeuronsReceptorgamma-Aminobutyric Acid030304 developmental biologyMice Knockout0303 health sciencesmusculoskeletal neural and ocular physiologyGeneral NeuroscienceGlutamate receptorfood and beveragesEndocannabinoid systemMice Inbred C57BLnervous systemForebrainExploratory BehaviorGABAergiclipids (amino acids peptides and proteins)CannabinoidNeurosciencepsychological phenomena and processes030217 neurology & neurosurgeryEndocannabinoidsEuropean Journal of Neuroscience
researchProduct

WIN 55,212-2, agonist of cannabinoid receptors, prevents amyloid β1-42 effects on astrocytes in primary culture

2015

Alzheimer's disease (AD), a neurodegenerative illness involving synaptic dysfunction with extracellular accumulation of Aβ1-42 toxic peptide, glial activation, inflammatory response and oxidative stress, can lead to neuronal death. Endogenous cannabinoid system is implicated in physiological and physiopathological events in central nervous system (CNS), and changes in this system are related to many human diseases, including AD. However, studies on the effects of cannabinoids on astrocytes functions are scarce. In primary cultured astrocytes we studied cellular viability using MTT assay. Inflammatory and oxidative stress mediators were determined by ELISA and Western-blot techniques both in…

Cannabinoid receptormedicine.medical_treatmentInterleukin-1betaNitric Oxide Synthase Type IIlcsh:Medicinemedicine.disease_causeReceptors CannabinoidWIN 55212-2Receptorlcsh:ScienceCerebral CortexMultidisciplinaryCalcium Channel BlockersSistema nerviós Malaltiesmedicine.symptomSignal transductionResearch ArticleSignal Transductionmedicine.drugmedicine.medical_specialtyCell SurvivalMorpholinesPrimary Cell CultureInflammationNaphthalenesBiologyNeurologiaFetusInternal medicinemedicineAnimalsViability assayCannabinoid Receptor AgonistsAmyloid beta-PeptidesSuperoxide DismutaseTumor Necrosis Factor-alphalcsh:RTranscription Factor RelAPeptide FragmentsBenzoxazinesRatsPPAR gammaOxidative StressEndocrinologyGene Expression RegulationCyclooxygenase 2Astrocyteslcsh:QFisiologia humanaCannabinoidOxidative stress
researchProduct

Cannabinoids mediate analgesia largely via peripheral type 1 cannabinoid receptors in nociceptors

2007

Although endocannabinoids constitute one of the first lines of defense against pain, the anatomical locus and the precise receptor mechanisms underlying cannabinergic modulation of pain are uncertain. Clinical exploitation of the system is severely hindered by the cognitive deficits, memory impairment, motor disturbances and psychotropic effects resulting from the central actions of cannabinoids. We deleted the type 1 cannabinoid receptor (CB1) specifically in nociceptive neurons localized in the peripheral nervous system of mice, preserving its expression in the CNS, and analyzed these genetically modified mice in preclinical models of inflammatory and neuropathic pain. The nociceptor-spec…

Central Nervous SystemCannabinoid receptorCannabinoid Receptor Modulatorsmedicine.medical_treatmentCentral nervous systemPharmacologyBiologyArticleMiceReceptor Cannabinoid CB1Ganglia SpinalCannabinoid Receptor ModulatorsPeripheral Nervous SystemmedicineAnimalsNeurons AfferentAllelesDNA PrimersMice KnockoutNerve Fibers UnmyelinatedCannabinoidsGeneral NeuroscienceNociceptorsPeripheral Nervous System DiseasesEndocannabinoid systemElectrophysiologyMice Inbred C57BLmedicine.anatomical_structurenervous systemPeripheral nervous systemNeuropathic painNociceptorlipids (amino acids peptides and proteins)CannabinoidAnalgesiaNeuroscience
researchProduct

Control of spasticity in a multiple sclerosis model using central nervous system-excluded CB1 cannabinoid receptor agonists

2014

The purpose of this study was the generation of central nervous system (CNS)-excluded cannabinoid receptor agonists to test the hypothesis that inhibition of spasticity, due to CNS autoimmunity, could be controlled by affecting neurotransmission within the periphery. Procedures included identification of chemicals and modeling to predict the mode of exclusion; induction and control of spasticity in the ABH mouse model of multiple sclerosis; conditional deletion of CB1 receptor in peripheral nerves; side-effect profiling to demonstrate the mechanism of CNS-exclusion via drug pumps; genome-wide association study in N2(129×ABH) backcross to map polymorphic cannabinoid drug pump; and sequencing…

Central Nervous SystemCannabinoid receptorEncephalomyelitis Autoimmune ExperimentalMultiple Sclerosismedicine.medical_treatmentCentral nervous systemPharmacologyBiologyBiochemistryMiceReceptor Cannabinoid CB1GeneticsmedicineAnimalsSpasticityMolecular BiologyCannabinoid Receptor AgonistsCannabinoidsMultiple sclerosisExperimental autoimmune encephalomyelitisCannabinoid Receptor Agonistsmedicine.disease3. Good healthmedicine.anatomical_structureAjulemic acidMuscle SpasticityFemaleCannabinoidmedicine.symptomMultidrug Resistance-Associated ProteinsBiotechnologymedicine.drug
researchProduct

Direct suppression of CNS autoimmune inflammation via the cannabinoid receptor CB1 on neurons and CB2 on autoreactive T cells.

2007

The cannabinoid system is immunomodulatory and has been targeted as a treatment for the central nervous system (CNS) autoimmune disease multiple sclerosis. Using an animal model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), we investigated the role of the CB(1) and CB(2) cannabinoid receptors in regulating CNS autoimmunity. We found that CB(1) receptor expression by neurons, but not T cells, was required for cannabinoid-mediated EAE suppression. In contrast, CB(2) receptor expression by encephalitogenic T cells was critical for controlling inflammation associated with EAE. CB(2)-deficient T cells in the CNS during EAE exhibited reduced levels of apoptosis, a higher…

Central Nervous SystemCannabinoid receptorEncephalomyelitis Autoimmune Experimentalmedicine.medical_treatmentEncephalomyelitisT-LymphocytesInflammationApoptosisMice TransgenicBiologyGeneral Biochemistry Genetics and Molecular BiologyReceptor Cannabinoid CB2MiceReceptor Cannabinoid CB1medicineCannabinoid receptor type 2AnimalsCell ProliferationDNA PrimersAutoimmune diseaseNeuronsExperimental autoimmune encephalomyelitisGeneral Medicinemedicine.diseaseEndocannabinoid systemImmunohistochemistryImmunologyEncephalitislipids (amino acids peptides and proteins)Cannabinoidmedicine.symptomNature medicine
researchProduct