Search results for " Classification"
showing 10 items of 1043 documents
Fall Detection Based on the Instantaneous Doppler Frequency : A Machine Learning Approach
2019
Modern societies are facing an ageing problem which comes with increased cost of healthcare. A major share of this ever-increasing cost is due to fall related injuries, which urges the development of fall detection systems. In this context, this paper paves the way for building of a radio-frequency-based fall detection system. This paper presents an activity simulator that generates the complex channel gain of indoor channels in the presence of one person performing three different activities, namely, slow fall, fast fall, and walking. We built a machine learning framework for activity recognition based on the complex channel gain. We assess the recognition accuracy of three different class…
Constructing Interpretable Classifiers to Diagnose Gastric Cancer Based on Breath Tests
2017
Quick, inexpensive and accurate diagnosis of gastric cancer is a necessity, but at this moment the available methods do not hold up. One of the most promising possibilities is breath test analysis, which is quick, relatively inexpensive and comfortable to the person tested. However, this method has not yet been well explored. Therefore in this article the authors propose using transparent classification models to explain diagnostic patterns and knowledge, which is acquired in the process. The models are induced using decision tree classification algorithms and RIPPER algorithm for decision rule induction. The accuracy of these models is compared to neural network accuracy.
Classical Training Methods
2006
This chapter reviews classical training methods for multilayer neural networks. These methods are widely used for classification and function modelling tasks. Nevertheless, they show a number of flaws or drawbacks that should be addressed in the development of such systems. They work by searching the minimum of an error function which defines the optimal behaviour of the neural network. Different standard problems are used to show the capabilities of these models; in particular, we have benchmarked the algorithms in a nonlinear classification problem and in three function modelling problems.
Cloud screening with combined MERIS and AATSR images
2009
This paper presents a cloud screening algorithm based on ensemble methods that exploits the combined information from both MERIS and AATSR instruments on board ENVISAT in order to improve current cloud masking products for both sensors. The first step is to analyze the synergistic use of MERIS and AATSR images in order to extract some physically-based features increasing the separability of clouds and surface. Then, several artificial neural networks are trained using different sets of input features and different sets of training samples depending on acquisition and surface conditions. Finally, outputs of the trained neural networks are combined at the decision level to construct a more ac…
Deep learning strategies for automatic fault diagnosis in photovoltaic systems by thermographic images
2021
Abstract Losses of electricity production in photovoltaic systems are mainly caused by the presence of faults that affect the efficiency of the systems. The identification of any overheating in a photovoltaic module, through the thermographic non-destructive test, may be essential to maintain the correct functioning of the photovoltaic system quickly and cost-effectively, without interrupting its normal operation. This work proposes a system for the automatic classification of thermographic images using a convolutional neural network, developed via open-source libraries. To reduce image noise, various pre-processing strategies were evaluated, including normalization and homogenization of pi…
Intrusion Detection with Interpretable Rules Generated Using the Tsetlin Machine
2020
The rapid deployment in information and communication technologies and internet-based services have made anomaly based network intrusion detection ever so important for safeguarding systems from novel attack vectors. To this date, various machine learning mechanisms have been considered to build intrusion detection systems. However, achieving an acceptable level of classification accuracy while preserving the interpretability of the classification has always been a challenge. In this paper, we propose an efficient anomaly based intrusion detection mechanism based on the Tsetlin Machine (TM). We have evaluated the proposed mechanism over the Knowledge Discovery and Data Mining 1999 (KDD’99) …
An Encrypted Traffic Classification Framework Based on Convolutional Neural Networks and Stacked Autoencoders
2020
In recent years, deep learning-based encrypted traffic classification has proven to be effective; especially, using neural networks to extract features from raw traffic to classify encrypted traffic. However, most of the neural networks need a fixed-sized input, so that the raw traffic need to be trimmed. This will cause the loss of some information; for example, we do not know the number of packets in a session. To solve these problems, a framework, which implements both a convolutional neural network (CNN) and a stacked autoencoder (SAE), is proposed in this paper. This framework uses a CNN to extract high-level features from raw network traffic and uses an SAE to encode the 26 statistica…
Properties of the Binary Neutron Star Merger GW170817
2019
On August 17, 2017, the Advanced LIGO and Advanced Virgo gravitational-wave detectors observed a low-mass compact binary inspiral. The initial sky localization of the source of the gravitational-wave signal, GW170817, allowed electromagnetic observatories to identify NGC 4993 as the host galaxy. In this work, we improve initial estimates of the binary's properties, including component masses, spins, and tidal parameters, using the known source location, improved modeling, and recalibrated Virgo data. We extend the range of gravitational-wave frequencies considered down to 23 Hz, compared to 30 Hz in the initial analysis. We also compare results inferred using several signal models, which ar…
All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data
2019
We present results of an all-sky search for continuous gravitational waves (CWs), which can be produced by fast-spinning neutron stars with an asymmetry around their rotation axis, using data from the second observing run of the Advanced LIGO detectors. We employ three different semi-coherent methods ($\textit{FrequencyHough}$, $\textit{SkyHough}$, and $\textit{Time-Domain $\mathcal{F}$-statistic}$) to search in a gravitational-wave frequency band from 20 to 1922 Hz and a first frequency derivative from $-1\times10^{-8}$ to $2\times10^{-9}$ Hz/s. None of these searches has found clear evidence for a CW signal, so we present upper limits on the gravitational-wave strain amplitude $h_0$ (the …
All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run
2019
We present the results of a search for short-duration gravitational-wave transients in the data from the second observing run of Advanced LIGO and Advanced Virgo. We search for gravitational-wave transients with a duration of milliseconds to approximately one second in the 32-4096 Hz frequency band with minimal assumptions about the signal properties, thus targeting a wide variety of sources. We also perform a matched-filter search for gravitational-wave transients from cosmic string cusps for which the waveform is well-modeled. The unmodeled search detected gravitational waves from several binary black hole mergers which have been identified by previous analyses. No other significant event…