Search results for " Clustering"

showing 10 items of 312 documents

Spatial diversity of chlorine residual in a drinking water distribution system: application of an integrated fuzzy logic technique

2014

A reduction in the concentration of chlorine, which is used as a chemical disinfectant for water in drinking water distribution systems, can be considered to be an index of the progressive deterioration of water quality. In this work, attention is given to the spatial distribution of the residual chlorine in drinking water distribution systems. The criterion for grouping the water-quality parameters normally used is highly subjective and often based on data that are not correctly identified. In this paper, a cluster analysis based on fuzzy logic is applied. The advantage of the proposed procedure is that it allows a user to identify (in an automatic way and without any specific assumption) …

Atmospheric Sciencecalibration clustering fuzzy logic networks reactions water qualityEnvironmental engineeringSampling (statistics)chemistry.chemical_elementGeotechnical Engineering and Engineering GeologyAntenna diversityFuzzy logicSettore ICAR/01 - IdraulicaReduction (complexity)chemistryChlorineCalibrationEnvironmental scienceWater qualityCluster analysisBiological systemCivil and Structural EngineeringWater Science and TechnologyJournal of Hydroinformatics
researchProduct

A Comparative Study on Fuzzy-Clustering-Based Lip Region Segmentation Methods

2011

As the first step of many lip-reading or visual speaker authentication systems, lip region segmentation is of vital importance. And fuzzy clustering based methods have been widely used in lip segmentation. In this paper, four fuzzy clustering based lip segmentation methods have been elaborated with their underlying rationale. Experiments have been carried out evaluate their performance comparatively. From the experimental results, SFCM has the best efficiency and FCMST has the best segmentation accuracy.

AuthenticationFuzzy clusteringComputer sciencebusiness.industryComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONPattern recognitionstomatognathic diseasesComputingMethodologies_PATTERNRECOGNITIONstomatognathic systemSegmentationArtificial intelligencebusinessSpatial analysisTemporal information
researchProduct

Sequential Lip Region Segmentation Using Fuzzy Clustering with Spatial and Temporal Information

2012

For many visual speech recognition and visual speaker authentication systems, lip region extraction is of vital important. In order to segment the lip region accurately and robustly from a lip sequence, a new fuzzy-clustering based algorithm is proposed. In the proposed method, a new dissimilarity measure is introduced to take all the color, spatial and temporal information into consideration. An iterative optimization method is employed to derive the optimal lip region membership map and the final segmentation result. From the experimental results, it is observed that the proposed algorithm can provide superior results compared with other traditional methods.

AuthenticationSequenceFuzzy clusteringComputer sciencebusiness.industryComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONScale-space segmentationPattern recognitionMeasure (mathematics)ComputingMethodologies_PATTERNRECOGNITIONSegmentationArtificial intelligencebusinessTemporal information
researchProduct

Medical news aggregation and ranking of taking into account the user needs

2019

The purpose of this work is to develop an intelligent information system that is designed for aggregation and ranking of news taking into account the needs of the user. The online market for mass media and the needs of readers, the purpose of their searches and moments is not enough to find the news is analyzed. A conceptual model of the information aggression system and ranking of news that would enable presentation of the work of the future intellectual information system, to show its structure is constructed. The methods and means for implementation of the intellectual information system are selected. An online resource for aggregation and ranking of news, news feeds and flexible setting…

Bayesian clustering Bayesian networks Content analisis Content ranking Context filtering Data mining Intelligent system Medical news News aggregation User needsCEUR Workshop Proceedings
researchProduct

Cluster-based active learning for compact image classification

2010

In this paper, we consider active sampling to label pixels grouped with hierarchical clustering. The objective of the method is to match the data relationships discovered by the clustering algorithm with the user's desired class semantics. The first is represented as a complete tree to be pruned and the second is iteratively provided by the user. The active learning algorithm proposed searches the pruning of the tree that best matches the labels of the sampled points. By choosing the part of the tree to sample from according to current pruning's uncertainty, sampling is focused on most uncertain clusters. This way, large clusters for which the class membership is already fixed are no longer…

Binary treeContextual image classificationbusiness.industryActive learning (machine learning)Sampling (statistics)Pattern recognitioncomputer.software_genreHierarchical clusteringMulticlass classificationTree (data structure)ComputingMethodologies_PATTERNRECOGNITIONLife ScienceArtificial intelligenceData miningbusinessCluster analysiscomputerMathematics
researchProduct

Discovering Protein Complexes in Protein Interaction Networks

2009

Bioinformatics network analysis Clustering
researchProduct

Fast dendrogram-based OTU clustering using sequence embedding

2014

Biodiversity assessment is an important step in a metagenomic processing pipeline. The biodiversity of a microbial metagenome is often estimated by grouping its 16S rRNA reads into operational taxonomic units or OTUs. These metagenomic datasets are typically large and hence require effective yet accurate computational methods for processing.In this paper, we introduce a new hierarchical clustering method called CRiSPy-Embed which aims to produce high-quality clustering results at a low computational cost. We tackle two computational issues of the current OTU hierarchical clustering approach: (1) the compute-intensive sequence alignment operation for building the distance matrix and (2) the …

Brown clusteringCURE data clustering algorithmSingle-linkage clusteringCorrelation clusteringCanopy clustering algorithmData miningBiologyHierarchical clustering of networksCluster analysiscomputer.software_genrecomputerHierarchical clusteringProceedings of the 5th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics
researchProduct

A Fuzzy Logic C-Means Clustering Algorithm to Enhance Microcalcifications Clusters in Digital Mammograms

2011

The detection of microcalcifications is a hard task, since they are quite small and often poorly contrasted against the background of images. The Computer Aided Detection (CAD) systems could be very useful for breast cancer control. In this paper, we report a method to enhance microcalcifications cluster in digital mammograms. A Fuzzy Logic clustering algorithm with a set of features is used for clustering microcalcifications. The method described was tested on simulated clusters of microcalcifications, so that the location of the cluster within the breast and the exact number of microcalcifications is known.

C-meanCOMPUTER-AIDED DETECTIONComputer scienceCADFuzzy logicSet (abstract data type)Cluster (physics)medicineMammographycancerComputer visionCLASSIFICATION.Cluster analysisbreastmedicine.diagnostic_testbusiness.industryPattern recognitionImage enhancementComputer aided detectionSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)microcalcificationComputingMethodologies_PATTERNRECOGNITIONbreast; cancer; microcalcifications; clustering; fuzzy logic; C-means; COMPUTER-AIDED DETECTION; CLASSIFICATION.Artificial intelligencefuzzy logicbusinessclustering
researchProduct

Parallelized Clustering of Protein Structures on CUDA-Enabled GPUs

2014

Estimation of the pose in which two given molecules might bind together to form a potential complex is a crucial task in structural biology. To solve this so-called "docking problem", most algorithms initially generate large numbers of candidate poses (or decoys) which are then clustered to allow for subsequent computationally expensive evaluations of reasonable representatives. Since the number of such candidates ranges from thousands to millions, performing the clustering on standard CPUs is highly time consuming. In this paper we analyze and evaluate different approaches to parallelize the nearest neighbor chain algorithm to perform hierarchical Ward clustering of protein structures usin…

CUDASpeedupComputer scienceNearest-neighbor chain algorithmParallel computingCluster analysisRoot-mean-square deviationPoseWard's methodHierarchical clustering2014 22nd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing
researchProduct

Cellular automata and urban development simulation : a transition rules creation process based on statistical analysis

2015

National audience; Nowadays land use evolution study has become a major stake in urban planning. The main focus is to understand the way in which land use evolves across time and to understand processes that take place. This understanding would allow to plan urban developments based on a knowledge as complete as possible covering as many fields as possible (i.e. urban planning, politics, sociology, etc.). Simulation tools can be used to merge and display different points of view and stakes from different stakeholders (Parrott & Meyer, 2012).

Cellular automataspatial analysisprincipal component analysis[SHS.GEO] Humanities and Social Sciences/Geographydecision tree[SHS.GEO]Humanities and Social Sciences/Geographyhierarchical clustering[ SHS.GEO ] Humanities and Social Sciences/Geography
researchProduct