Search results for " Collider"

showing 10 items of 1415 documents

Construction and commissioning of the S-Band high gradient RF laboratory at IFIC

2018

An S-band High-Gradient (HG) Radio Frequency (RF) laboratory is under construction and commissioning at IFIC. The purpose of the laboratory is to perform investigations of high-gradient phenomena and to develop normal-conducting RF technology, with special focus on RF systems for hadron-therapy. The layout of the facility is derived from the scheme of the Xbox-3 test facility at CERN [1] and uses medium peak-power (7.5 MW) and high repetition rate (400 Hz) klystrons, whose RF output is combined to drive two testing slots to the required power. The design and construction of the various components of the system started in 2016 and has been completed. The installation and commissioning of the…

HistoryLarge Hadron ColliderKlystron010308 nuclear & particles physicsComputer sciencebusiness.industryProject commissioningElectrical engineering01 natural sciences7. Clean energyLinear particle acceleratorComputer Science ApplicationsEducationlaw.inventionPower (physics)Rf technologylaw0103 physical sciencesS bandRadio frequency010306 general physicsbusinessJournal of Physics: Conference Series
researchProduct

Reconstruction of Micropattern Detector Signals using Convolutional Neural Networks

2017

Micropattern gaseous detector (MPGD) technologies, such as GEMs or MicroMegas, are particularly suitable for precision tracking and triggering in high rate environments. Given their relatively low production costs, MPGDs are an exemplary candidate for the next generation of particle detectors. Having acknowledged these advantages, both the ATLAS and CMS collaborations at the LHC are exploiting these new technologies for their detector upgrade programs in the coming years. When MPGDs are utilized for triggering purposes, the measured signals need to be precisely reconstructed within less than 200 ns, which can be achieved by the usage of FPGAs. In this work, we present a novel approach to id…

HistoryLarge Hadron ColliderPhysics::Instrumentation and Detectorsbusiness.industryComputer scienceNoise (signal processing)DetectorMicroMegas detectorTracking (particle physics)Convolutional neural networkComputer Science ApplicationsEducationUpgradebusinessField-programmable gate arrayComputer hardwareJournal of Physics: Conference Series
researchProduct

Measuring lepton flavor violation at LHC with a long-lived slepton in the coannihilation region

2008

When the mass difference between the lightest slepton, the NLSP, and the lightest neutralino, the LSP, is smaller than the tau mass, the lifetime of the lightest slepton increases in many orders of magnitude with respect to typical lifetimes of other supersymmetric particles. These small mass differences are possible in the MSSM and, for instance, they correspond to the coannihilation region of the CMSSM for $M_{1/2} \gsim 700$ GeV. In a general gravity-mediated MSSM, where the lightest supersymmetric particle is the neutralino, the lifetime of the lightest slepton is inversely proportional to the square of the intergenerational mixing in the slepton mass matrices. Such a long-lived slepton…

HistoryNuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsHigh Energy Physics::LatticeFlavourFOS: Physical sciencesLightest Supersymmetric ParticleEducationStandard ModelNuclear physicsHigh Energy Physics - Phenomenology (hep-ph)Atlas (anatomy)medicinePhysicsLarge Hadron ColliderHigh Energy Physics::PhenomenologySuperpartnerSupersymmetryComputer Science ApplicationsHigh Energy Physics - Phenomenologymedicine.anatomical_structureNeutralinoHigh Energy Physics::ExperimentMinimal Supersymmetric Standard ModelLeptonPhysical Review D
researchProduct

Discrete Symmetries CP, T, CPT

2016

The role of Symmetry Breaking mechanisms to search for New Physics is of highest importance. We discuss the status and prospects of the Discrete Symmetries CP, T, CPT looking for their separate Violation in LHC experiments and meson factories.

HistoryParticle physicsMeson productionMesonCPT symmetryQC1-999Physics beyond the Standard ModelGeneral Physics and AstronomyFOS: Physical sciencesQuantum entanglement01 natural sciencesEducationHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesSymmetry breaking010306 general physicsPhysicsLarge Hadron Collider010308 nuclear & particles physicsCabibbo–Kobayashi–Maskawa matrixPhysicsOperator (physics)High Energy Physics::PhenomenologyTime evolutionComputer Science ApplicationsB-factoryBaryogenesisStandard Model (mathematical formulation)High Energy Physics - PhenomenologyHomogeneous spaceCP violationHigh Energy Physics::ExperimentEPJ Web of Conferences
researchProduct

Centrality and rapidity dependence of inclusive pion and prompt photon production in p+Pb collisions at the LHC with EPS09s nPDFs

2014

The centrality dependencies of the inclusive neutral pion and prompt photon nuclear modification factors for p+Pb collisions at the LHC are studied using a spatially dependent set of nuclear PDFs, EPS09s. The calculations are performed at mid- and forward rapidities searching for an observable which would optimally probe the spatial dependence of the nuclear PDFs. In addition, we discuss to which $x$ values of the nucleus the different observables are sensitive.

HistoryParticle physicsPhotonNuclear TheoryNuclear TheorynPDFsFOS: Physical sciencesinclusive pion114 Physical sciences01 natural sciencesnuclear parton distribution fucntionsEducationNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)Pion0103 physical sciencesmedicineRapiditySpatial dependenceNuclear Experiment010306 general physicsPhysicsLarge Hadron Collider010308 nuclear & particles physicsQCD PREDICTIONSphoton productionObservableComputer Science ApplicationsHigh Energy Physics - Phenomenologymedicine.anatomical_structureCentralityTO-LEADING-ORDERNucleusJournal of Physics: Conference Series
researchProduct

The impact of the LHC nuclear program on nPDFs

2015

Volume: 612 The proton-lead and lead-lead runs at the LHC are providing an enormous amount of data sensitive to the nuclear modifications of the initial state. The measurements explore a region of phase space not probed by previous experiments opening a possibility to test and hopefully, also improve the current knowledge of nuclear parton densities. In this talk, we discuss to what extent the present quantitative results for the charge asymmetry in electroweak boson production show sensitivity to the nuclear parton distributions. Peer reviewed

HistoryParticle physicsmedia_common.quotation_subjectNuclear TheorynPDFsParton114 Physical sciences01 natural sciencesAsymmetryEducationNuclear physics0103 physical sciencesNuclear Experiment010306 general physicsmedia_commonBosonQuantum chromodynamicsPhysicsLarge Hadron ColliderLHC nuclear program010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyElectroweak interactionCharge (physics)Computer Science ApplicationsPARTON DISTRIBUTIONSPhase spaceHigh Energy Physics::ExperimentJournal of Physics: Conference Series
researchProduct

Study of exotic decay of Cs isotope close to the proton drip line

2020

6 pags., 6 figs. -- 27th International Nuclear Physics Conference (INPC2019) 29 July - 2 August 2019, Glasgow, UK

HistoryProtonGround stateParticle emissionsNuclear TheoryExotic decayProton spectraSpallation reactionsCesium01 natural sciencesLanthanum compounds3100EducationNuclear physicsParticle emissionGermanium compoundsGamma detectors0103 physical sciencesNuclear Physics - ExperimentSpallation010306 general physicsNuclear ExperimentLine (formation)PhysicsLarge Hadron ColliderIsotope010308 nuclear & particles physicsCharged particle arraysCharged particleComputer Science ApplicationsPhysics::Accelerator PhysicsTime distributionFísica nuclearUnbound stateGround stateydinfysiikka
researchProduct

A framework for vertex reconstruction in the ATLAS experiment at LHC

2010

In anticipation of the first LHC data to come, a considerable effort has been devoted to ensure the efficient reconstruction of vertices in the ATLAS detector. This includes the reconstruction of photon conversions, long lived particles, secondary vertices in jets as well as finding and fitting of primary vertices. The implementation of the corresponding algorithms requires a modular design based on the use of abstract interfaces and a common Event Data Model. An enhanced software framework addressing various physics applications of vertex reconstruction has been developed in the ATLAS experiment. Presented in this paper are the general principles of this framework. A particular emphasis is…

HistoryTheoretical computer scienceLarge Hadron Collider010308 nuclear & particles physicsComputer scienceAtlas detectorbusiness.industryATLAS experimentComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONModular designcomputer.software_genre01 natural sciencesComputer Science ApplicationsEducationComputational scienceVertex (geometry)Software frameworkEvent data0103 physical sciences010306 general physicsbusinesscomputerImplementationComputingMethodologies_COMPUTERGRAPHICSJournal of Physics: Conference Series
researchProduct

Rapidity correlations in Lambda baryon and proton production in hadronic Z0 decays

1998

In an analysis of multihadronic events recorded at LEP by DELPHI in the years 1992 through 1994, charged hadrons are identified using the measurement of their energy loss and their Cherenkov angle. Rapidity correlations of \La-\La, proton-proton, and \La-proton pairs are compared. The agreement with the string and cluster fragmentation models is tested. For those pairs that frame a meson in terms of rapidity the compensation of strangeness is studied. For \La{}$\overline{\mathrm{p}}$ pairs the additional correlation with respect to charged kaons is analysed.

IMAGING CHERENKOV DETECTOR; DELPHIParticle physicsNuclear and High Energy PhysicsMesonElectron–positron annihilationHadronNuclear TheoryStrangenessLambdaLambda baryon01 natural sciencesPartícules (Física nuclear)Nuclear physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Rapidity010306 general physicsNuclear ExperimentDELPHIPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyLARGE ELECTRON POSITRON COLLIDERIMAGING CHERENKOV DETECTORLarge Electron–Positron ColliderPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIPARTICLE PHYSICSPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentParticle Physics - Experiment
researchProduct

Precision luminosity measurements at LHCb

2014

Measuring cross-sections at the LHC requires the luminosity to be determined accurately at each centre-of-mass energy $\sqrt{s}$. In this paper results are reported from the luminosity calibrations carried out at the LHC interaction point 8 with the LHCb detector for $\sqrt{s}$ = 2.76, 7 and 8 TeV (proton-proton collisions) and for $\sqrt{s_{NN}}$ = 5 TeV (proton-lead collisions). Both the "van der Meer scan" and "beam-gas imaging" luminosity calibration methods were employed. It is observed that the beam density profile cannot always be described by a function that is factorizable in the two transverse coordinates. The introduction of a two-dimensional description of the beams improves sig…

Instrumentation for particle accelerators and storage rings - high energy (linear acceleratorsHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)cluster finding[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment06.20.fbInstrumentationMathematical PhysicsQCPhysicsLuminosity (scattering theory)Large Hadron ColliderPattern recognition cluster finding calibration and fitting methodssynchrotrons)DetectorPattern recognition cluster finding calibration and fitting methodsComputer interfacecalibration and fitting methodsFísica nuclearTracking and position-sensitive detectorLHCParticle Physics - ExperimentParticle physics29.40.GxPattern recognition cluster finding calibration and fitting methods; Instrumentation for particle accelerators and storage rings - high energy (linear accelerators synchrotrons)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsLHCb - Abteilung HofmannPattern recognition cluster finding calibration and fitting methodInstrumentation for particle accelerators and storage rings - high energy (linear accelerators synchrotrons)NOConsistency (statistics)Pattern recognitionCalibrationSDG 7 - Affordable and Clean EnergyInstrumentation for particle accelerators and storage rings - high energy (linear accelerators synchrotrons)/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyInteraction pointStandards and calibrationFunction (mathematics)29.50.+vLHCbInstrumentation for particle accelerators and storage rings - high energy (linear accelerators synchrotrons); Pattern recognition cluster finding calibration and fitting methods; Instrumentation; Mathematical PhysicsTEVPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentInstrumentation for particle accelerators and storage rings - high energy (linear accelerators synchrotrons); Pattern recognition cluster finding calibration and fitting methodsEnergy (signal processing)
researchProduct