Search results for " Collider"

showing 10 items of 1415 documents

CERN-MEDICIS: A Review Since Commissioning in 2017

2021

The CERN-MEDICIS (MEDical Isotopes Collected from ISolde) facility has delivered its first radioactive ion beam at CERN (Switzerland) in December 2017 to support the research and development in nuclear medicine using non-conventional radionuclides. Since then, fourteen institutes, including CERN, have joined the collaboration to drive the scientific program of this unique installation and evaluate the needs of the community to improve the research in imaging, diagnostics, radiation therapy and personalized medicine. The facility has been built as an extension of the ISOLDE (Isotope Separator On Line DEvice) facility at CERN. Handling of open radioisotope sources is made possible thanks to i…

Medicine (General)HIGH-ENERGYIon beamNuclear engineeringHigh resolutionProton Synchrotron Booster01 natural sciencesmedicalISOLDE030218 nuclear medicine & medical imaginglaw.invention03 medical and health sciencesR5-9200302 clinical medicineMedicine General & InternallawGeneral & Internal Medicine0103 physical sciencesCERNNuclear Physics - ExperimentBeam dump010306 general physicsradionuclidesOriginal ResearchLarge Hadron ColliderScience & TechnologyGeneral MedicineMass separationHandling systemmass separationBeamlineMEDICISMedicineEnvironmental scienceLife Sciences & Biomedicine
researchProduct

Update of the search for supersymmetric particles in scenarios with Gravitino LSP and Sleptons NLSP

2001

An update of the search for sleptons, neutralinos and charginos in the context of scenarios where the lightest supersymmetric particle is the gravitino and the next-to-lightest supersymmetric particle is a slepton, is presented, together with the update of the search for heavy stable charged particles in light gravitino scenarios and Minimal Supersymmetric Standard Models. Data collected in 1999 with the DELPHI detector at centre-of-mass energies around 192, 196, 200 and 202 GeV were analysed. No evidence for the production of these supersymmetric particles was found. Hence, new mass limits were derived at 95% confidence level.

NEUTRALINOSNuclear and High Energy PhysicsParticle physicsMONTE-CARLO SIMULATION; LOWEST ORDER CALCULATIONS; E(+)E(-) COLLISIONS; 2-PHOTON PROCESSES; PAIR PRODUCTION; MISSING ENERGY; STAU NLSP; BREAKING; SUPERGRAVITY; NEUTRALINOSLOWEST ORDER CALCULATIONSPAIR PRODUCTIONMONTE-CARLO SIMULATIONFOS: Physical sciences2-PHOTON PROCESSESContext (language use)01 natural sciencesLightest Supersymmetric ParticlePartícules (Física nuclear)High Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)E(+)E(-) COLLISIONS0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]SUPERGRAVITY010306 general physicsDELPHIPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyLARGE ELECTRON POSITRON COLLIDERCharged particleSTAU NLSPPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIParticlePARTICLE PHYSICSMISSING ENERGYGravitinoFísica nuclearHigh Energy Physics::ExperimentParticle Physics - ExperimentBREAKING
researchProduct

Photon events with missing energy at root s=183 to 189 GeV

2000

The production of single photons has been studied in the reaction e+e- -> gamma + invisible particles at centre-of-mass energies of 183 GeV and 189 GeV. A previously published analysis of events with multi-photon final states accompanied by missing energy has been updated with 189 GeV data. The data were collected with the DELPHI detector and correspond to integrated luminosities of about 51 pb^{-1} and 158 pb^{-1} at the two energies. The number of light neutrino families is measured to be 2.84 +/- 0.15(stat) +/- 0.14(syst). The absence of an excess of events beyond that expected from Standard Model processes is used to set limits on new physics as described by supersymmetric and compos…

NEUTRALINOSParticle physicsDIMENSIONSPhotonPhysics and Astronomy (miscellaneous)Physics beyond the Standard ModelAstrophysics::High Energy Astrophysical PhenomenaSTANDARD MODELFOS: Physical sciencesScale (descriptive set theory)7. Clean energy01 natural sciencesPartícules (Física nuclear)Standard ModelHigh Energy Physics - ExperimentGravitationHigh Energy Physics - Experiment (hep-ex)E(+)E(-) COLLISIONSSIGNALSSEARCH0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsNuclear ExperimentEngineering (miscellaneous)DELPHIPhysicsMissing energy010308 nuclear & particles physicsSUPERLIGHT GRAVITINOLEPLARGE ELECTRON POSITRON COLLIDERSINGLE-PHOTONCOLLIDERSPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIPARTICLE PHYSICSProduction (computer science)Física nuclearHigh Energy Physics::ExperimentNeutrinoE(+)E(-) COLLISIONS; SUPERLIGHT GRAVITINO; STANDARD MODEL; SINGLE-PHOTON; COLLIDERS; SEARCH; LEP; NEUTRALINOS; DIMENSIONS; SIGNALSParticle Physics - Experiment
researchProduct

Search for supersymmetric particles in scenarios with a gravitino LSP and stau NLSP

2000

Sleptons, neutralinos and charginos were searched for in the context of scenarios where the lightest supersymmetric particle is the gravitino. It was assumed that the stau is the next-to-lightest supersymmetric particle. Data collected with the DELPHI detector at a centre-of-mass energy near 189 GeV were analysed combining the methods developed in previous searches at lower energies. No evidence for the production of these supersymmetric particles was found. Hence, limits were derived at 95% confidence level.

NEUTRALINOSParticle physicsPhysics and Astronomy (miscellaneous)LOWEST ORDER CALCULATIONSPAIR PRODUCTIONENERGIESMONTE-CARLO SIMULATIONpluridisciplinarityFOS: Physical sciences2-PHOTON PROCESSESContext (language use)01 natural sciencesLightest Supersymmetric ParticlePartícules (Física nuclear)High Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)E(+)E(-) COLLISIONS0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]RADIATIVE-CORRECTIONSontology010306 general physicsEngineering (miscellaneous)DELPHIPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyreflexivityLEPscience studiesepistemologieLARGE ELECTRON POSITRON COLLIDERhistory of sciencePARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIMONTE-CARLO SIMULATION; LOWEST ORDER CALCULATIONS; RADIATIVE-CORRECTIONS; PAIR PRODUCTION; E(+)E(-) COLLISIONS; 2-PHOTON PROCESSES; ENERGIES; BREAKING; LEP; NEUTRALINOSParticlePARTICLE PHYSICSGravitinoFísica nuclearHigh Energy Physics::ExperimentcomplexityParticle Physics - ExperimentBREAKING
researchProduct

Effects of shadowing on Drell-Yan dilepton production in high energy nuclear collisions

2001

We compute cross sections for the Drell-Yan process in nuclear collisions at next-to-leading order (NLO) in ��_s. The effects of shadowing on the normalization and on the mass and rapidity dependence of these cross sections are presented. An estimate of higher order corrections is obtained from next-to-next-to-leading order (NNLO) calculation of the rapidity-integrated mass distribution. Variations in these predictions resulting from choices of parton distribution sets are discussed. Numerical results for mass distributions at NLO are presented for RHIC and LHC energies, using appropriate rapidity intervals. The shadowing factors in the dilepton mass range 2 < M < 10 GeV are predicted…

Normalization (statistics)PhysicsNuclear and High Energy PhysicsParticle physicsHigh energyLarge Hadron ColliderMass distributionHigh Energy Physics::PhenomenologyFOS: Physical sciencesGeneral Physics and AstronomyPartonHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)RapidityHigh Energy Physics::ExperimentNuclear Experiment
researchProduct

Dielectron production in proton-proton and proton-lead collisions at √sNN=5.02TeV

2020

The first measurements of dielectron production at midrapidity (|ηe| < 0.8) in proton–proton and proton–lead collisions at √sNN = 5.02 TeV at the LHC are presented. The dielectron cross section is measured with the ALICE detector as a function of the invariant mass mee and the pair transverse momentum pT, ee in the ranges mee < 3.5 GeV/c2 and pT, ee < 8 GeV/c, in both collision systems. In proton–proton collisions, the charm and beauty cross sections are determined at midrapidity from a fit to the data with two different event generators. This complements the existing dielectron measurements performed at √s = 7 and 13 TeV. The slope of the √s dependence of the three measurements is…

Nuclear and High Energy Physics:Kjerne- og elementærpartikkelfysikk: 431 [VDP]ProtonHadronNuclear Theorydielectrondielectron production01 natural sciences7. Clean energyNuclear physicshadron-ion interactionshadron-hadron collisions; dielectron production;Ionic Collisionsdielectron cross sectiondielectron nuclear modification factor0103 physical sciencesInvariant massDielectronCharm (quantum number)Dielectron; hadron-hadron interactions; hadron-ion interactionsPhysics::Atomic PhysicsIonic Collisions; Relativistic Heavy-ion Collisions; Quark-Gluon Plasma010306 general physicsNuclear ExperimentQuantum chromodynamicsPhysicsLarge Hadron Collider010308 nuclear & particles physicsPhysicsVDP::Kjerne- og elementærpartikkelfysikk: 431hadron-hadron interactionNuclear matterhadron-hadron collisionsNATURAL SCIENCES. Physics.ALICE LHC proton-lead collisions proton-proton collisionsPRIRODNE ZNANOSTI. Fizika.:Nuclear and elementary particle physics: 431 [VDP]VDP::Nuclear and elementary particle physics: 431dielectron ; LHC ; dielectron cross section ; dielectron nuclear modification factorQuark–gluon plasmaQuark-Gluon PlasmaHigh Energy Physics::ExperimentLHChadron-hadron interactionsRelativistic Heavy-ion Collisions
researchProduct

Neutron capture cross section measurements for nuclear astrophyisics at CERN n_TOF

2005

A series of neutron capture cross section measurements of interest to nuclear astrophysics have been recently performed at n_TOF, the neutron spallation source operating at CERN. The low repetition frequency of the proton beam driver, the extremely high instantaneous neutron flux, and the low background conditions in the experimental area are optimal for capture cross section measurements on low-mass or radioactive samples. An overview of the measurements performed during the two experimental campaigns in 2002 and 2003 is presented with special emphasis on the measurement of the capture cross sections of the Os isotopes relevant for the cosmochronology based on the Re/Os clock. http://www.s…

Nuclear and High Energy PhysicsAstrofísica nuclearNeutron cross sectionsProtonAstrophysics::High Energy Astrophysical PhenomenaNuclear Theory[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesNeutrons -- SeccionsNuclear physicsCross section (physics)Neutron flux0103 physical sciencesNeutron cross sectionNuclear astrophysicsSpallationNeutron010306 general physicsNuclear ExperimentPhysicsNeutronsLarge Hadron Collider:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsRadioactivityPhysics::Accelerator PhysicsNuclear astrophysicsFísica nuclear
researchProduct

Neutron measurements for advanced nuclear systems: The n_TOF project at CERN

2012

A few years ago, the neutron time-of-flight facility n_TOF was built at CERN to address some of the urgent needs of high-accuracy nuclear data for Accelerator Driven Systems and other advanced nuclear energy systems, as well as for nuclear astrophysics and fundamental nuclear physics. Thanks to the characteristics of the neutron beam, and to state-of-the-art detection and acquisition systems, high quality neutron cross-section data have been obtained for a variety of isotopes, many of which radioactive. Following an important upgrade of the spallation target and of the experimental area, a new measurement campaign has started last year. After a brief review of the most important results obt…

Nuclear and High Energy PhysicsAstrofísica nuclearNuclear engineeringNuclear Theory[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyNuclear physics0103 physical sciencesNuclear astrophysicsSpallationNeutron010306 general physicsNuclear ExperimentInstrumentationPhysics:Energies::Energia nuclear [Àrees temàtiques de la UPC]NeutronsLarge Hadron Collider:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsNuclear fissionNuclear dataNeutron radiationNuclear technologyEnergia nuclearPhysics::Accelerator PhysicsFísica nuclearSpallation Neutron Source
researchProduct

Laser resonance ionization spectroscopy on lutetium for the MEDICIS project

2017

The MEDICIS-PROMED Innovative Training Network under the Horizon 2020 EU program aims to establish a network of early stage researchers, involving scientific exchange and active cooperation between leading European research institutions, universities, hospitals, and industry. Primary scientific goal is the purpose of providing and testing novel radioisotopes for nuclear medical imaging and radionuclide therapy. Within a closely linked project at CERN, a dedicated electromagnetic mass separator system is presently under installation for production of innovative radiopharmaceutical isotopes at the new CERN-MEDICIS laboratory, directly adjacent to the existing CERN-ISOLDE radioactive ion beam …

Nuclear and High Energy PhysicsCERN-MEDICISIon beamNuclear engineeringchemistry.chemical_element02 engineering and technology01 natural sciencesLASER IONIZATION SPECTROSCOPYIsotope separationlaw.invention010309 opticslawIonizationLUTETIUM0103 physical sciencesDetectors and Experimental TechniquesPhysical and Theoretical ChemistryLarge Hadron ColliderChemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsLaserAtomic and Molecular Physics and OpticsIon sourceLutetiumRadionuclide therapyISOTOPE SEPARATIONAtomic physics0210 nano-technologyHyperfine Interactions
researchProduct

Latest predictions from the EbyE NLO EKRT model

2019

We present the latest results from the NLO pQCD + saturation + viscous hydrodynamics (EbyE NLO EKRT) model. The parameters in the EKRT saturation model are fixed by the charged hadron multiplicity in the 0-5 \% 2.76 TeV Pb+Pb collisions. The $\sqrt{s}$, $A$ and centrality dependence of the initial particle production follows then from the QCD dynamics of the model. This allows us to predict the $\sqrt{s}$ and $A$ dependence of the particle production. We show that our results are in an excellent agreement with the low-$p_T$ data from 2.76 TeV and 5.02 TeV Pb+Pb collisions at the LHC as well as with the data from the 200 GeV Au+Au collisions at RHIC. In particular, we study the centrality de…

Nuclear and High Energy PhysicsCOLLISIONSMULTIPLICITIESNuclear TheoryHadronFOS: Physical scienceshiukkasfysiikka7. Clean energy01 natural sciences114 Physical sciencesdissipative fluid dynamicNuclear Theory (nucl-th)Nuclear physicsHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciences010306 general physicsTRANSVERSE ENERGIESNuclear ExperimentNuclear theoryMass numberQuantum chromodynamicsPhysicsLarge Hadron Colliderta114010308 nuclear & particles physicssaturationHigh Energy Physics::PhenomenologyMultiplicity (mathematics)heavy-ion collisionsCharged particleHigh Energy Physics - PhenomenologyHigh Energy Physics::Experimentperturbative QCD calculationsydinfysiikka
researchProduct