Search results for " Complexity theory"

showing 10 items of 131 documents

A local complexity based combination method for decision forests trained with high-dimensional data

2012

Accurate machine learning with high-dimensional data is affected by phenomena known as the “curse” of dimensionality. One of the main strategies explored in the last decade to deal with this problem is the use of multi-classifier systems. Several of such approaches are inspired by the Random Subspace Method for the construction of decision forests. Furthermore, other studies rely on estimations of the individual classifiers' competence, to enhance the combination in the multi-classifier and improve the accuracy. We propose a competence estimate which is based on local complexity measurements, to perform a weighted average combination of the decision forest. Experimental results show how thi…

Clustering high-dimensional dataComputational complexity theorybusiness.industryComputer scienceDecision treeMachine learningcomputer.software_genreRandom forestRandom subspace methodArtificial intelligenceData miningbusinessCompetence (human resources)computerClassifier (UML)Curse of dimensionality2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)
researchProduct

Almost Tight Bound for the Union of Fat Tetrahedra in Three Dimensions

2007

For any AND-OR formula of size N, there exists a bounded-error N1/2+o(1)-time quantum algorithm, based on a discrete-time quantum walk, that evaluates this formula on a black-box input. Balanced, or "approximately balanced," formulas can be evaluated in O(radicN) queries, which is optimal. It follows that the (2-o(1))th power of the quantum query complexity is a lower bound on the formula size, almost solving in the positive an open problem posed by Laplante, Lee and Szegedy.

CombinatoricsDiscrete mathematicsComputational complexity theoryOpen problemExistential quantificationQuantum algorithmQuantum walkComputational geometryUpper and lower boundsQuantum computerMathematics48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07)
researchProduct

Span programs for functions with constant-sized 1-certificates

2012

Besides the Hidden Subgroup Problem, the second large class of quantum speed-ups is for functions with constant-sized 1-certificates. This includes the OR function, solvable by the Grover algorithm, the element distinctness, the triangle and other problems. The usual way to solve them is by quantum walk on the Johnson graph. We propose a solution for the same problems using span programs. The span program is a computational model equivalent to the quantum query algorithm in its strength, and yet very different in its outfit. We prove the power of our approach by designing a quantum algorithm for the triangle problem with query complexity O(n35/27) that is better than O(n13/10) of the best p…

CombinatoricsDiscrete mathematicsGrover's algorithmQuantum phase estimation algorithmSimon's problemQuantum walkQuantum algorithmQuantum algorithm for linear systems of equationsMathematicsQuantum complexity theoryQuantum computerProceedings of the forty-fourth annual ACM symposium on Theory of computing
researchProduct

Complexity of decision trees for boolean functions

2004

For every positive integer k we present an example of a Boolean function f/sub k/ of n = (/sub k//sup 2k/) + 2k variables, an optimal deterministic tree T/sub k/' for f/sub k/ of complexity 2k + 1 as well as a nondeterministic decision tree T/sub k/ computing f/sub k/. with complexity k + 2; thus of complexity about 1/2 of the optimal deterministic decision tree. Certain leaves of T/sub k/ are called priority leaves. For every input a /spl isin/ {0, 1}/sup n/ if any of the parallel computation reaches a priority leaves then its label is f/sub k/ (a). If the priority leaves are not reached at all then the label on any of the remaining leaves reached by the computation is f/sub k/. (a).

CombinatoricsDiscrete mathematicsNondeterministic algorithmComputational complexity theoryIntegerDecision treeTree (set theory)Boolean functionMathematics33rd International Symposium on Multiple-Valued Logic, 2003. Proceedings.
researchProduct

Enlarging the gap between quantum and classical query complexity of multifunctions

2013

Quantum computing aims to use quantum mechanical effects for the efficient performance of computational tasks. A popular research direction is enlarging the gap between classical and quantum algorithm complexity of the same computational problem. We present new results in quantum query algorithm design for multivalued functions that allow to achieve a large quantum versus classical complexity separation. To compute a basic finite multifunction in a quantum model only one query is enough while classically three queries are required. Then, we present two generalizations and a modification of the original algorithm, and obtain the following complexity gaps: Q UD (M′) ≤ N versus C UD (M′) ≥ 3N,…

CombinatoricsDiscrete mathematicsQuantum sortQuantum networkQuantum phase estimation algorithmQuantum algorithmSimon's problemQuantum informationQuantum computerQuantum complexity theoryMathematics2013 Ninth International Conference on Natural Computation (ICNC)
researchProduct

On the decision problem for the guarded fragment with transitivity

2002

The guarded fragment with transitive guards, [GF+TG], is an extension of GF in which certain relations are required to be transitive, transitive predicate letters appear only in guards of the quantifiers and the equality symbol may appear everywhere. We prove that the decision problem for [GF+TG] is decidable. This answers the question posed in (Ganzinger et al., 1999). Moreover, we show that the problem is 2EXPTIME-complete. This result is optimal since the satisfiability problem for GF is 2EXPTIME-complete (Gradel, 1999). We also show that the satisfiability problem for two-variable [GF+TG] is NEXPTIME-hard in contrast to GF with bounded number of variables for which the satisfiability pr…

CombinatoricsDiscrete mathematicsTransitive relationComputational complexity theoryComputabilityBounded functionPredicate (mathematical logic)Decision problemBoolean satisfiability problemDecidabilityMathematics
researchProduct

On the Finite Satisfiability Problem for the Guarded Fragment with Transitivity

2005

We study the finite satisfiability problem for the guarded fragment with transitivity. We prove that in case of one transitive predicate the problem is decidable and its complexity is the same as the general satisfiability problem, i.e. 2Exptime-complete. We also show that finite models for sentences of GF with more transitive predicate letters used only in guards have essentially different properties than infinite ones.

CombinatoricsDiscrete mathematicsTransitive relationTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESPhraseComputational complexity theoryComputer Science::Logic in Computer SciencePredicate (mathematical logic)Decision problemBoolean satisfiability problemSentenceDecidabilityMathematics
researchProduct

On the Computational Complexity of Binary and Analog Symmetric Hopfield Nets

2000

We investigate the computational properties of finite binary- and analog-state discrete-time symmetric Hopfield nets. For binary networks, we obtain a simulation of convergent asymmetric networks by symmetric networks with only a linear increase in network size and computation time. Then we analyze the convergence time of Hopfield nets in terms of the length of their bit representations. Here we construct an analog symmetric network whose convergence time exceeds the convergence time of any binary Hopfield net with the same representation length. Further, we prove that the MIN ENERGY problem for analog Hopfield nets is NP-hard and provide a polynomial time approximation algorithm for this p…

Computational complexity theoryCognitive NeuroscienceComputationBinary numberHopfield networkTuring machinesymbols.namesakeRecurrent neural networkArts and Humanities (miscellaneous)Convergence (routing)symbolsTime complexityAlgorithmMathematicsNeural Computation
researchProduct

Descriptive Complexity, Lower Bounds and Linear Time

1999

This paper surveys two related lines of research: Logical characterizations of (non-deterministic) linear time complexity classes, and non-expressibility results concerning sublogics of existential second-order logic. Starting from Fagin’s fundamental work there has been steady progress in both fields with the effect that the weakest logics that are used in characterizations of linear time complexity classes are closely related to the strongest logics for which inexpressibility proofs for concrete problems have been obtained. The paper sketches these developments and highlights their connections as well as the obstacles that prevent us from closing the remaining gap between both kinds of lo…

Computational complexity theoryComputer scienceDescriptive complexity theoryMathematical proofCombinatoricsTuring machinesymbols.namesakeTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESRegular languageCalculusComplexity classsymbolsUnary functionTime complexity
researchProduct

Efficient and accurate methodology for solving multiserver retrial systems

2005

Proposed is a novel methodology for solving retrial systems which is based on the aggregation of levels of the Markov model beyond a given one. Its evaluation concludes that it is more accurate than previous approximations while requiring a low computational cost.

Computational complexity theoryComputer scienceDistributed computingCellular trafficElectrical and Electronic EngineeringMarkov modelElectronics Letters
researchProduct