Search results for " Complexity theory"

showing 10 items of 131 documents

The computational complexity of the criticality problems in a network with interval activity times

2002

Abstract The paper analyzes the criticality in a network with interval activities duration times. A natural generalization of the criticality notion (for a path, an activity and an event) for the case of network with interval activity duration times is given. The computation complexity of five problems linked to the introduced criticality notion is presented.

Discrete mathematicsInformation Systems and ManagementTheoretical computer scienceGeneral Computer ScienceComputational complexity theoryGeneralizationEvent (relativity)Interval (mathematics)Management Science and Operations ResearchIndustrial and Manufacturing EngineeringCriticalityModeling and SimulationPath (graph theory)Computation complexityDuration (project management)MathematicsEuropean Journal of Operational Research
researchProduct

Balls into non-uniform bins

2014

Balls-into-bins games for uniform bins are widely used to model randomized load balancing strategies. Recently, balls-into-bins games have been analysed under the assumption that the selection probabilities for bins are not uniformly distributed. These new models are motivated by properties of many peer-to-peer (P2P) networks, which are not able to perfectly balance the load over the bins. While previous evaluations try to find strategies for uniform bins under non-uniform bin selection probabilities, this paper investigates heterogeneous bins, where the "capacities" of the bins might differ significantly. We show that heterogeneous environments can even help to distribute the load more eve…

Discrete mathematicsMathematical optimizationComputational complexity theoryComputer Networks and CommunicationsComputer scienceDistributed computingAstrophysics::Cosmology and Extragalactic AstrophysicsPhysics::Data Analysis; Statistics and ProbabilityLoad balancing (computing)BinTheoretical Computer ScienceLoad managementCapacity planningArtificial IntelligenceHardware and ArchitectureTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITYBounded functionBall (bearing)Resource allocationHardware_ARITHMETICANDLOGICSTRUCTURESGame theorySoftwareMathematicsMathematicsofComputing_DISCRETEMATHEMATICS2010 IEEE International Symposium on Parallel & Distributed Processing (IPDPS)
researchProduct

A Logical Characterisation of Linear Time on Nondeterministic Turing Machines

1999

The paper gives a logical characterisation of the class NTIME(n) of problems that can be solved on a nondeterministic Turing machine in linear time. It is shown that a set L of strings is in this class if and only if there is a formula of the form ∃f1..∃fk∃R1..∃Rm∀xφv; that is true exactly for all strings in L. In this formula the fi are unary function symbols, the Ri are unary relation symbols and φv; is a quantifierfree formula. Furthermore, the quantification of functions is restricted to non-crossing, decreasing functions and in φv; no equations in which different functions occur are allowed. There are a number of variations of this statement, e.g., it holds also for k = 3. From these r…

Discrete mathematicsNTIMEComputational complexity theoryUnary operationCombinatoricsNondeterministic algorithmTuring machinesymbols.namesakeNon-deterministic Turing machinesymbolsUnary functionTime complexityComputer Science::Formal Languages and Automata TheoryMathematics
researchProduct

2014

Is there a general theorem that tells us when we can hope for exponential speedups from quantum algorithms, and when we cannot? In this paper, we make two advances toward such a theorem, in the black-box model where most quantum algorithms operate. First, we show that for any problem that is invariant under permuting inputs and outputs (like the collision or the element distinctness problems), the quantum query complexity is at least the 9 th root of the classical randomized query complexity. This resolves a conjecture of Watrous from 2002. Second, inspired by recent work of O’Donnell et al. and Dinur et al., we conjecture that every bounded low-degree polynomial has a “highly influential” …

Discrete mathematicsQuantum sortQuantum capacityComputer Science::Computational ComplexityTheoretical Computer ScienceCombinatoricsComputational Theory and MathematicsBQPQuantum no-deleting theoremQuantum algorithmQuantum walkComputer Science::DatabasesQuantum complexity theoryMathematicsQuantum computerTheory of Computing
researchProduct

Any AND-OR Formula of Size N Can Be Evaluated in Time $N^{1/2+o(1)}$ on a Quantum Computer

2007

Consider the problem of evaluating an AND-OR formula on an $N$-bit black-box input. We present a bounded-error quantum algorithm that solves this problem in time $N^{1/2+o(1)}$. In particular, approximately balanced formulas can be evaluated in $O(\sqrt{N})$ queries, which is optimal. The idea of the algorithm is to apply phase estimation to a discrete-time quantum walk on a weighted tree whose spectrum encodes the value of the formula.

Discrete mathematicsQuantum t-designComputational complexity theoryGeneral Computer ScienceGeneral MathematicsSpectrum (functional analysis)Value (computer science)0102 computer and information sciencesTree (graph theory)01 natural sciencesCombinatoricsTree (descriptive set theory)Discrete time and continuous time010201 computation theory & mathematics0103 physical sciencesQuantum operationQuantum phase estimation algorithmQuantum Fourier transformQuantum walkQuantum algorithm010306 general physicsMathematicsQuantum computerSIAM Journal on Computing
researchProduct

Lower Bounds and Hierarchies for Quantum Memoryless Communication Protocols and Quantum Ordered Binary Decision Diagrams with Repeated Test

2017

We explore multi-round quantum memoryless communication protocols. These are restricted version of multi-round quantum communication protocols. The “memoryless” term means that players forget history from previous rounds, and their behavior is obtained only by input and message from the opposite player. The model is interesting because this allows us to get lower bounds for models like automata, Ordered Binary Decision Diagrams and streaming algorithms. At the same time, we can prove stronger results with this restriction. We present a lower bound for quantum memoryless protocols. Additionally, we show a lower bound for Disjointness function for this model. As an application of communicatio…

Discrete mathematicsSublinear functionComputational complexity theory010102 general mathematics0102 computer and information sciencesFunction (mathematics)01 natural sciencesUpper and lower boundsCombinatorics010201 computation theory & mathematicsQuantum algorithm0101 mathematicsQuantum information scienceCommunication complexityQuantum computerMathematics
researchProduct

The monadic quantifier alternation hierarchy over grids and pictures

1998

The subject of this paper is the expressive power of monadic second-order logic over two-dimensional grids. We give a new, self-contained game-theoretical proof of the nonexpressibility results of Matz and Thomas. As we show, this implies the strictness of the monadic second-order quantifier alternation hierarchy over grids.

Discrete mathematicsTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESFinite-state machineComputational complexity theoryHierarchy (mathematics)Proof theoryComputer Science::Logic in Computer ScienceQuantifier (linguistics)Subject (grammar)Alternation (formal language theory)Monadic predicate calculusMathematics
researchProduct

The Descriptive Complexity Approach to LOGCFL

1999

Building upon the known generalized-quantifier-based firstorder characterization of LOGCFL, we lay the groundwork for a deeper investigation. Specifically, we examine subclasses of LOGCFL arising from varying the arity and nesting of groupoidal quantifiers. Our work extends the elaborate theory relating monoidal quantifiers to NC1 and its subclasses. In the absence of the BIT predicate, we resolve the main issues: we show in particular that no single outermost unary groupoidal quantifier with FO can capture all the context-free languages, and we obtain the surprising result that a variant of Greibach's "hardest contextfree language" is LOGCFL-complete under quantifier-free BIT-free interpre…

Discrete mathematicsUnary operationComputer science0102 computer and information sciences02 engineering and technologyComputer Science::Computational ComplexityArityDescriptive complexity theory01 natural sciencesNondeterministic algorithm010201 computation theory & mathematicsDeterministic automatonBIT predicate0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingNondeterministic finite automatonLOGCFL
researchProduct

Regression Wavelet Analysis for Lossless Coding of Remote-Sensing Data

2016

A novel wavelet-based scheme to increase coefficient independence in hyperspectral images is introduced for lossless coding. The proposed regression wavelet analysis (RWA) uses multivariate regression to exploit the relationships among wavelet-transformed components. It builds on our previous nonlinear schemes that estimate each coefficient from neighbor coefficients. Specifically, RWA performs a pyramidal estimation in the wavelet domain, thus reducing the statistical relations in the residuals and the energy of the representation compared to existing wavelet-based schemes. We propose three regression models to address the issues concerning estimation accuracy, component scalability, and c…

Discrete wavelet transformComputational complexity theorybusiness.industry0211 other engineering and technologiesHyperspectral imagingPattern recognitionRegression analysis02 engineering and technologyWavelet packet decompositionWaveletPrincipal component analysis0202 electrical engineering electronic engineering information engineeringGeneral Earth and Planetary Sciences020201 artificial intelligence & image processingArtificial intelligenceElectrical and Electronic Engineeringbusiness021101 geological & geomatics engineeringRemote sensingMathematicsCoding (social sciences)IEEE Transactions on Geoscience and Remote Sensing
researchProduct

A Mesh-free Particle Method for Transient Full-wave Simulation

2007

A mesh-free particle method is presented for electromagnetic (EM) transient simulation. The basic idea is to obtain numerical solutions for the partial differential equations describing the EM problem in time domain, by using a set of particles, considered as spatial interpolation points of the field variables, arbitrarily placed in the problem domain and by avoiding the use of a regular mesh. Irregular problems geometry with diffused non-homogeneous media can be modeled only with an initial set of arbitrarily distributed particles. The time dependence is accounted for with an explicit finite difference scheme. Moreover the particle discretization can be improved during the process time ste…

DiscretizationComputational complexity theoryElectromagnetic (EM) transient analysiComputer scienceNumerical methodMultivariate interpolationReduction (complexity)Settore MAT/08 - Analisi NumericaElectromagnetic waveFull waveTime domainElectrical and Electronic EngineeringPhysicsPartial differential equationMathematical analysisFinite difference methodComputer simulationPartial differential equationsMesh freeInterpolationElectronic Optical and Magnetic MaterialsComputational complexitySmoothed particle interpolationSettore ING-IND/31 - ElettrotecnicaParticleComputational electromagneticsTransient (oscillation)Mesh-free particle methodInterpolation2006 12th Biennial IEEE Conference on Electromagnetic Field Computation
researchProduct