Search results for " Compression"
showing 10 items of 400 documents
Table Compression
2016
Data Compression Techniques for massive tables are described. Related methodological results are also presented.
Approximation of piecewise smooth functions and images by edge-adapted (ENO-EA) nonlinear multiresolution techniques
2008
Abstract This paper introduces and analyzes new approximation procedures for bivariate functions. These procedures are based on an edge-adapted nonlinear reconstruction technique which is an intrinsically two-dimensional extension of the essentially non-oscillatory and subcell resolution techniques introduced in the one-dimensional setting by Harten and Osher. Edge-adapted reconstructions are tailored to piecewise smooth functions with geometrically smooth edge discontinuities, and are therefore attractive for applications such as image compression and shock computations. The local approximation order is investigated both in L p and in the Hausdorff distance between graphs. In particular, i…
Low-Rate Reduced Complexity Image Compression using Directionlets
2006
The standard separable two-dimensional (2-D) wavelet transform (WT) has recently achieved a great success in image processing because it provides a sparse representation of smooth images. However, it fails to capture efficiently one-dimensional (1-D) discontinuities, like edges and contours, that are anisotropic and characterized by geometrical regularity along different directions. In our previous work, we proposed a construction of critically sampled perfect reconstruction anisotropic transform with directional vanishing moments (DVM) imposed in the corresponding basis functions, called directionlets. Here, we show that the computational complexity of our transform is comparable to the co…
Space-Frequency Quantization using Directionlets
2007
In our previous work we proposed a construction of critically sampled perfect reconstruction transforms with directional vanishing moments (DVMs) imposed in the corresponding basis functions along different directions, called directionlets. Here, we combine the directionlets with the space-frequency quantization (SFQ) image compression method, originally based on the standard two-dimensional (2-D) wavelet transform (WT). We show that our new compression method outperforms the standard SFQ as well as the state-of-the-art compression methods, like SPIHT and JPEG-2000, in terms of the quality of compressed images, especially in a low-rate compression regime. We also show that the order of comp…
Perceptual adaptive insensitivity for support vector machine image coding.
2005
Support vector machine (SVM) learning has been recently proposed for image compression in the frequency domain using a constant epsilon-insensitivity zone by Robinson and Kecman. However, according to the statistical properties of natural images and the properties of human perception, a constant insensitivity makes sense in the spatial domain but it is certainly not a good option in a frequency domain. In fact, in their approach, they made a fixed low-pass assumption as the number of discrete cosine transform (DCT) coefficients to be used in the training was limited. This paper extends the work of Robinson and Kecman by proposing the use of adaptive insensitivity SVMs [2] for image coding u…
An efficient hardware implementation of MQ decoder of the JPEG2000
2014
Abstract JPEG2000 is an international standard for still images intended to overcome the shortcomings of the existing JPEG standard. Compared to JPEG image compression techniques, JPEG2000 standard has not only better not only has better compression ratios, but it also offers some exciting features. As it’s hard to meet the real-time requirement of image compression systems by software, it is necessary to implement compression system by hardware. The MQ decoder of the JPEG2000 standard is an important bottleneck for real-time applications. In order to meet the real-time requirement we propose in this paper a novel architecture for a MQ decoder with high throughput which is comparable to tha…
A GPU-Based DVC to H.264/AVC Transcoder
2010
Mobile to mobile video conferencing is one of the services that the newest mobile network operators can offer to users With the apparition of the distributed video coding paradigm which moves the majority of complexity from the encoder to the decoder, this offering can be achieved by introducing a transcoder This device has to convert from the distributed video coding paradigm to traditional video coding such as H.264/AVC which is formed by simpler decoders and more complex encoders, and allows to the users to execute only the low complex algorithms In order to deal with this high complex video transcoder, this paper introduces a graphics processing unit based transcoder as base station The…
Complex networks : application for texture characterization and classification
2008
This article describes a new method and approch of texture characterization. Using complex network representation of an image, classical and derived (hierarchical) measurements, we presente how to have good performance in texture classification. Image is represented by a complex networks : one pixel as a node. Node degree and clustering coefficient, using with traditionnal and extended hierarchical measurements, are used to characterize ”organisation” of textures.
Compression-based classification of biological sequences and structures via the Universal Similarity Metric: experimental assessment.
2007
Abstract Background Similarity of sequences is a key mathematical notion for Classification and Phylogenetic studies in Biology. It is currently primarily handled using alignments. However, the alignment methods seem inadequate for post-genomic studies since they do not scale well with data set size and they seem to be confined only to genomic and proteomic sequences. Therefore, alignment-free similarity measures are actively pursued. Among those, USM (Universal Similarity Metric) has gained prominence. It is based on the deep theory of Kolmogorov Complexity and universality is its most novel striking feature. Since it can only be approximated via data compression, USM is a methodology rath…
Improving Lossless Image Compression with Contextual Memory
2019
With the increased use of image acquisition devices, including cameras and medical imaging instruments, the amount of information ready for long term storage is also growing. In this paper we give a detailed description of the state-of-the-art lossless compression software PAQ8PX applied to grayscale image compression. We propose a new online learning algorithm for predicting the probability of bits from a stream. We then proceed to integrate the algorithm into PAQ8PX&rsquo