Search results for " Computer Science"
showing 10 items of 3983 documents
Biological Effect of a Hybrid Anticancer Agent Based on Kinase and Histone Deacetylase Inhibitors on Triple-Negative (MDA-MB231) Breast Cancer Cells
2016
We examined the effects of the histone deacetylase inhibitor (HDACi) suberoylanilide\ud hydroxamic acid (SAHA) combined with the vascular endothelial growth factor receptor-1/2 inhibitor\ud (3Z)-5-hydroxy-3-(1H-pyrrol-2-ylmethylidene)-2,3-dihydro-1H-indol-2-one on MDA-MB-231 breast\ud cancer cells (triple-negative) in the form of both a cocktail of the separate compounds and a chemically\ud synthesized hybrid (N-hydroxy-N'-[(3Z)-2-oxo-3-(1H-pyrrol-2-ylmethylidene)-2,3-dihydro-1H-indol-\ud 5-yl]octanediamide). Comparative flow cytometric and Western blot analyses were performed on\ud cocktail- and hybrid-treated cells to evaluate cell cycle distribution, autophagy/apoptosis modulation,\ud an…
Curve Extraction by Geodesics Fusion: Application to Polymer Reptation Analysis
2016
© Springer International Publishing Switzerland 2016. In the molecular field, researchers analyze dynamics of polymers by microscopy: several measurements such as length and curvature are performed in their studies. To achieve correct analysis they need to extract the curve representing as good as possible the observed polymer shape which is a grayscale thick curve with noise and blur. We propose, in this paper, a method to extract such a curve. A polymer chain moves in a snake-like fashion (Reptation): it can self-intersect and form several complex geometries. To efficiently extract the different geometries, we generate the curve by computing a piecewise centerline browsing the shape by ge…
An Integrative Framework for the Construction of Big Functional Networks
2018
We present a methodology for biological data integration, aiming at building and analysing large functional networks which model complex genotype-phenotype associations. A functional network is a graph where nodes represent cellular components (e.g., genes, proteins, mRNA, etc.) and edges represent associations among such molecules. Different types of components may cohesist in the same network, and associations may be related to physical[biochemical interactions or functional/phenotipic relationships. Due to both the large amount of involved information and the computational complexity typical of the problems in this domain, the proposed framework is based on big data technologies (Spark a…
A Basic Architecture of an Autonomous Adaptive System With Conscious-Like Function for a Humanoid Robot.
2018
In developing a humanoid robot, there are two major objectives. One is developing a physical robot having body, hands, and feet resembling those of human beings and being able to similarly control them. The other is to develop a control system that works similarly to our brain, to feel, think, act, and learn like ours. In this article, an architecture of a control system with a brain-oriented logical structure for the second objective is proposed. The proposed system autonomously adapts to the environment and implements a clearly defined “consciousness” function, through which both habitual behavior and goal-directed behavior are realized. Consciousness is regarded as a function for effecti…
The janus face of NKT cell function in autoimmunity and infectious diseases
2018
Natural killer T cells (NKT) are a subset of T lymphocytes bridging innate and adaptive immunity. These cells recognize self and microbial glycolipids bound to non-polymorphic and highly conserved CD1d molecules. Three NKT cell subsets, type I, II and NKT-like expressing different antigen receptors (TCR) were described and TCR activation promotes intracellular events leading to specific functional activities. NKT can exhibit different functions depending on the secretion of soluble molecules and the interaction with other cell types. NKT cells act as regulatory cells in the defence against infections but, on the other hand, their effector functions can be involved in the pathogenesis of sev…
How to deal with Haplotype data: An Extension to the Conceptual Schema of the Human Genome
2016
[EN] The goal of this work is to describe the advantages of the application of Conceptual Modeling (CM) in complex domains, such as genomics. Nowadays, the study and comprehension of the human genome is a major challenge due to its high level of complexity. The constant evolution in the genomic domain contributes to the generation of ever larger amounts of new data, which means that if we do not manage it correctly data quality could be compromised (i.e., problems related with heterogeneity and inconsistent data). In this paper, we propose the use of a Conceptual Schema of the Human Genome (CSHG), designed to understand and improve our ontological commitment to the domain and also extend (e…
WES/WGS Reporting of Mutations from Cardiovascular "Actionable" Genes in Clinical Practice: A Key Role for UMD Knowledgebases in the Era of Big Datab…
2016
International audience; High-throughput next-generation sequencing such as whole-exome and whole-genome sequencing are being rapidly integrated into clinical practice. The use of these techniques leads to the identification of secondary variants for which decisions about the reporting or not to the patient need to be made. The American College of Medical Genetics and Genomics recently published recommendations for the reporting of these variants in clinical practice for 56 "actionable" genes. Among these, seven are involved in Marfan Syndrome And Related Disorders (MSARD) resulting from mutations of the FBN1, TGFBR1 and 2, ACTA2, SMAD3, MYH11 and MYLK genes. Here, we show that mutations col…
DNA combinatorial messages and Epigenomics: The case of chromatin organization and nucleosome occupancy in eukaryotic genomes
2019
Abstract Epigenomics is the study of modifications on the genetic material of a cell that do not depend on changes in the DNA sequence, since those latter involve specific proteins around which DNA wraps. The end result is that Epigenomic changes have a fundamental role in the proper working of each cell in Eukaryotic organisms. A particularly important part of Epigenomics concentrates on the study of chromatin, that is, a fiber composed of a DNA-protein complex and very characterizing of Eukaryotes. Understanding how chromatin is assembled and how it changes is fundamental for Biology. In more than thirty years of research in this area, Mathematics and Theoretical Computer Science have gai…
Betweenness Centrality for Networks with Non-Overlapping Community Structure
2018
Evaluating the centrality of nodes in complex networks is one of the major research topics being explored due to its wide range of applications. Among the various measures that have been developed over the years, Betweenness centrality is one of the most popular. Indeed, it has proved to be efficient in many real-world situations. In this paper, we propose an extension of the Betweenness centrality designed for networks with nonoverlapping community structure. It is a linear combination of the so-called “local” and “global” Betweenness measures. The Local measure takes into account the influence of a node at the community level while the global measure depends only on the interactions betwe…
2020
Hierarchy and centrality are two popular notions used to characterize the importance of entities in complex systems. Indeed, many complex systems exhibit a natural hierarchical structure, and centrality is a fundamental characteristic allowing to identify key constituents. Several measures based on various aspects of network topology have been proposed in order to quantify these concepts. While numerous studies have investigated whether centrality measures convey redundant information, how centrality and hierarchy measures are related is still an open issue. In this paper, we investigate the association between centrality and hierarchy using several correlation and similarity evaluation mea…