Search results for " Computer Science"
showing 10 items of 3983 documents
DeepEva: A deep neural network architecture for assessing sentence complexity in Italian and English languages
2021
Abstract Automatic Text Complexity Evaluation (ATE) is a research field that aims at creating new methodologies to make autonomous the process of the text complexity evaluation, that is the study of the text-linguistic features (e.g., lexical, syntactical, morphological) to measure the grade of comprehensibility of a text. ATE can affect positively several different contexts such as Finance, Health, and Education. Moreover, it can support the research on Automatic Text Simplification (ATS), a research area that deals with the study of new methods for transforming a text by changing its lexicon and structure to meet specific reader needs. In this paper, we illustrate an ATE approach named De…
Using Tsetlin Machine to discover interpretable rules in natural language processing applications
2021
Tsetlin Machines (TM) use finite state machines for learning and propositional logic to represent patterns. The resulting pattern recognition approach captures information in the form of conjunctive clauses, thus facilitating human interpretation. In this work, we propose a TM-based approach to three common natural language processing (NLP) tasks, namely, sentiment analysis, semantic relation categorization and identifying entities in multi-turn dialogues. By performing frequent itemset mining on the TM-produced patterns, we show that we can obtain a global and a local interpretation of the learning, one that mimics existing rule-sets or lexicons. Further, we also establish that our TM base…
Exploiting deep learning algorithms and satellite image time series for deforestation prediction
2022
In recent years, we have witnessed the emergence of Deep Learning (DL) methods, which have led to enormous progress in various fields such as automotive driving, computer vision, medicine, finances, and remote sensing data analysis. The success of these machine learning methods is due to the ever-increasing availability of large amounts of information and the computational power of computers. In the field of remote sensing, we now have considerable volumes of satellite images thanks to the large number of Earth Observation (EO) satellites orbiting the planet. With the revisit time of satellites over an area becoming shorter and shorter, it will probably soon be possible to obtain daily imag…
Real-time micro-expression analysis by artificial vision
2022
Human-computer interaction technologies focus more and more on the human being, whether it is on his identity, or on his physical and mental state. Significant progress has been made in the last few decades. However, the study of thoughts and emotions is still an underdeveloped field, but one that has begun to gain considerable interest. In this field, the analysis of facial expressions is the preferred treatment.Unlike a macro-expression, which is visible to the eye, a micro-expression is a type of involuntary facial expression that is extremely rapid and of very low intensity. The computer vision scientific community has been studying ways to automatically recognize micro-expressions usin…
Multi-layer intrusion detection system with ExtraTrees feature selection, extreme learning machine ensemble, and softmax aggregation
2019
Abstract Recent advances in intrusion detection systems based on machine learning have indeed outperformed other techniques, but struggle with detecting multiple classes of attacks with high accuracy. We propose a method that works in three stages. First, the ExtraTrees classifier is used to select relevant features for each type of attack individually for each (ELM). Then, an ensemble of ELMs is used to detect each type of attack separately. Finally, the results of all ELMs are combined using a softmax layer to refine the results and increase the accuracy further. The intuition behind our system is that multi-class classification is quite difficult compared to binary classification. So, we…
OmniFlowNet: a Perspective Neural Network Adaptation for Optical Flow Estimation in Omnidirectional Images
2021
International audience; Spherical cameras and the latest image processing techniques open up new horizons. In particular, methods based on Convolutional Neural Networks (CNNs) now give excellent results for optical flow estimation on perspective images. However, these approaches are highly dependent on their architectures and training datasets. This paper proposes to benefit from years of improvement in perspective images optical flow estimation and to apply it to omnidirectional ones without training on new datasets. Our network, OmniFlowNet, is built on a CNN specialized in perspective images. Its convolution operation is adapted to be consistent with the equirectangular projection. Teste…
Increasing sample efficiency in deep reinforcement learning using generative environment modelling
2020
Hybrid architecture for shape reconstruction and object recognition
1998
The proposed architecture is aimed to recover 3-D- shape information from gray-level images of a scene; to build a geometric representation of the scene in terms of geometric primitives; and to reason about the scene. The novelty of the architecture is in fact the integration of different approaches: symbolic reasoning techniques typical of knowledge representation in artificial intelligence, algorithmic capabilities typical of artificial vision schemes, and analogue techniques typical of artificial neural networks. Experimental results obtained by means of an implemented version of the proposed architecture acting on real scene images are reported to illustrate the system capabilities.
Combining a context aware neural network with a denoising autoencoder for measuring string similarities
2020
Abstract Measuring similarities between strings is central for many established and fast-growing research areas, including information retrieval, biology, and natural-language processing. The traditional approach to string similarity measurements is to define a metric with respect to a word space that quantifies and sums up the differences between characters in two strings; surprisingly, these metrics have not evolved a great deal over the past few decades. Indeed, the majority of them are still based on making a simple comparison between character and character distributions without considering the words context. This paper proposes a string metric that encompasses similarities between str…
Estimation of Granger causality through Artificial Neural Networks: applications to physiological systems and chaotic electronic oscillators
2021
One of the most challenging problems in the study of complex dynamical systems is to find the statistical interdependencies among the system components. Granger causality (GC) represents one of the most employed approaches, based on modeling the system dynamics with a linear vector autoregressive (VAR) model and on evaluating the information flow between two processes in terms of prediction error variances. In its most advanced setting, GC analysis is performed through a state-space (SS) representation of the VAR model that allows to compute both conditional and unconditional forms of GC by solving only one regression problem. While this problem is typically solved through Ordinary Least Sq…