Search results for " Computer"
showing 10 items of 6910 documents
In Situ Representations and Access Consciousness in Neural Blackboard or Workspace Architectures
2018
Phenomenal theories of consciousness assert that consciousness is based on specific neural correlates in the brain, which can be separated from all cognitive functions we can perform. If so, the search for robot consciousness seems to be doomed. By contrast, theories of functional or access consciousness assert that consciousness can be studied only with forms of cognitive access, given by cognitive processes. Consequently, consciousness and cognitive access cannot be fully dissociated. Here, the global features of cognitive access of consciousness are discussed based on neural blackboard or (global) workspace architectures, combined with content addressable or "in situ" representations as …
Application of modern computer algebra systems in food formulations and development: A case study
2017
Abstract Background Nutritional security determines the level of public health within a population while inadequate nutrition is one of the major factors in development of various health problems. This can be alleviated with sufficient and affordable access to currently available or newly designed nutritious foods. Scope and approach Formulation of new foods can be very costly, so methods able to lower design expanses are of utmost importance to the industry. Hence, the purpose of this work was to rationalize utilization of modern computerized algebraic systems (CAS) in solving traditional problems for formulating food mixtures by food combinatoric principles (FCP). Key findings and conclus…
Informational and linguistic analysis of large genomic sequence collections via efficient Hadoop cluster algorithms
2018
Abstract Motivation Information theoretic and compositional/linguistic analysis of genomes have a central role in bioinformatics, even more so since the associated methodologies are becoming very valuable also for epigenomic and meta-genomic studies. The kernel of those methods is based on the collection of k-mer statistics, i.e. how many times each k-mer in {A,C,G,T}k occurs in a DNA sequence. Although this problem is computationally very simple and efficiently solvable on a conventional computer, the sheer amount of data available now in applications demands to resort to parallel and distributed computing. Indeed, those type of algorithms have been developed to collect k-mer statistics in…
FASTdoop: A versatile and efficient library for the input of FASTA and FASTQ files for MapReduce Hadoop bioinformatics applications
2017
Abstract Summary MapReduce Hadoop bioinformatics applications require the availability of special-purpose routines to manage the input of sequence files. Unfortunately, the Hadoop framework does not provide any built-in support for the most popular sequence file formats like FASTA or BAM. Moreover, the development of these routines is not easy, both because of the diversity of these formats and the need for managing efficiently sequence datasets that may count up to billions of characters. We present FASTdoop, a generic Hadoop library for the management of FASTA and FASTQ files. We show that, with respect to analogous input management routines that have appeared in the Literature, it offers…
Detecting mutations by eBWT
2018
In this paper we develop a theory describing how the extended Burrows-Wheeler Transform (eBWT) of a collection of DNA fragments tends to cluster together the copies of nucleotides sequenced from a genome G. Our theory accurately predicts how many copies of any nucleotide are expected inside each such cluster, and how an elegant and precise LCP array based procedure can locate these clusters in the eBWT. Our findings are very general and can be applied to a wide range of different problems. In this paper, we consider the case of alignment-free and reference-free SNPs discovery in multiple collections of reads. We note that, in accordance with our theoretical results, SNPs are clustered in th…
The colored longest common prefix array computed via sequential scans
2018
Due to the increased availability of large datasets of biological sequences, the tools for sequence comparison are now relying on efficient alignment-free approaches to a greater extent. Most of the alignment-free approaches require the computation of statistics of the sequences in the dataset. Such computations become impractical in internal memory when very large collections of long sequences are considered. In this paper, we present a new conceptual data structure, the colored longest common prefix array (cLCP), that allows to efficiently tackle several problems with an alignment-free approach. In fact, we show that such a data structure can be computed via sequential scans in semi-exter…
Q-nexus: a comprehensive and efficient analysis pipeline designed for ChIP-nexus
2016
Background: ChIP-nexus, an extension of the ChIP-exo protocol, can be used to map the borders of protein-bound DNA sequences at nucleotide resolution, requires less input DNA and enables selective PCR duplicate removal using random barcodes. However, the use of random barcodes requires additional preprocessing of the mapping data, which complicates the computational analysis. To date, only a very limited number of software packages are available for the analysis of ChIP-exo data, which have not yet been systematically tested and compared on ChIP-nexus data. Results: Here, we present a comprehensive software package for ChIP-nexus data that exploits the random barcodes for selective removal …
Alignment-free sequence comparison using absent words
2018
Sequence comparison is a prerequisite to virtually all comparative genomic analyses. It is often realised by sequence alignment techniques, which are computationally expensive. This has led to increased research into alignment-free techniques, which are based on measures referring to the composition of sequences in terms of their constituent patterns. These measures, such as $q$-gram distance, are usually computed in time linear with respect to the length of the sequences. In this paper, we focus on the complementary idea: how two sequences can be efficiently compared based on information that does not occur in the sequences. A word is an {\em absent word} of some sequence if it does not oc…
The Amino-Terminal Domain of GRK5 Inhibits Cardiac Hypertrophy through the Regulation of Calcium-Calmodulin Dependent Transcription Factors.
2018
We have recently demonstrated that the amino-terminal domain of G protein coupled receptor kinase (GRK) type 5, (GRK5-NT) inhibits NFκB activity in cardiac cells leading to a significant amelioration of LVH. Since GRK5-NT is known to bind calmodulin, this study aimed to evaluate the functional role of GRK5-NT in the regulation of calcium-calmodulin-dependent transcription factors. We found that the overexpression of GRK5-NT in cardiomyoblasts significantly reduced the activation and the nuclear translocation of NFAT and its cofactor GATA-4 in response to phenylephrine (PE). These results were confirmed in vivo in spontaneously hypertensive rats (SHR), in which intramyocardial adenovirus-med…
Use of deep learning methods to translate drug-induced gene expression changes from rat to human primary hepatocytes
2020
In clinical trials, animal and cell line models are often used to evaluate the potential toxic effects of a novel compound or candidate drug before progressing to human trials. However, relating the results of animal and in vitro model exposures to relevant clinical outcomes in the human in vivo system still proves challenging, relying on often putative orthologs. In recent years, multiple studies have demonstrated that the repeated dose rodent bioassay, the current gold standard in the field, lacks sufficient sensitivity and specificity in predicting toxic effects of pharmaceuticals in humans. In this study, we evaluate the potential of deep learning techniques to translate the pattern of …