Search results for " Conjecture"
showing 10 items of 96 documents
On the Landis conjecture for the fractional Schrödinger equation
2023
In this paper, we study a Landis-type conjecture for the general fractional Schrödinger equation ((−P)s+q)u=0. As a byproduct, we also prove the additivity and boundedness of the linear operator (−P)s for non-smooth coefficents. For differentiable potentials q, if a solution decays at a rate exp (−∣x∣1+), then the solution vanishes identically. For non-differentiable potentials q, if a solution decays at a rate exp (−∣x∣4s−14s+), then the solution must again be trivial. The proof relies on delicate Carleman estimates. This study is an extension of the work by Rüland and Wang (2019). peerReviewed
UNIQUELY HAMILTONIAN GRAPHS. A TALK IN THREE PARTS
2018
Professor of UWA Gordon Royle gives a talk in Singapour devoted to UH3 graphs, graphs with unique Hamiltonian cycle with vertex degree at least three
Using 2-colorings in the theory of uniquely Hamiltonian graphs
2019
We use the concept of 2-coloring in analyzing UH3 graphs and building exact specifications of functions to find new UH3 graphs by Hamiltonian cycle edge extractions
Radial symmetry of p-harmonic minimizers
2017
"It is still not known if the radial cavitating minimizers obtained by Ball [J.M. Ball, Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Phil. Trans. R. Soc. Lond. A 306 (1982) 557--611] (and subsequently by many others) are global minimizers of any physically reasonable nonlinearly elastic energy". The quotation is from [J. Sivaloganathan and S. J. Spector, Necessary conditions for a minimum at a radial cavitating singularity in nonlinear elasticity, Ann. Inst. H. Poincare Anal. Non Lineaire 25 (2008), no. 1, 201--213] and seems to be still accurate. The model case of the $p$-harmonic energy is considered here. We prove that the planar radial minimizers are indee…
Spectral Asymptotics for More General Operators in One Dimension
2019
In this chapter, we generalize the results of Chap. 3. The results and the main ideas are close, but not identical, to the ones of Hager (Ann Henri Poincare 7(6):1035–1064, 2006). We will use some h-pseudodifferential machinery, see for instance Dimassi and Sjostrand (Spectral Asymptotics in the Semi-classical Limit, London Mathematical Society Lecture Note Series, vol 268. Cambridge University Press, Cambridge, 1999).
Distribution of Large Eigenvalues for Elliptic Operators
2019
In this chapter we consider elliptic differential operators on a compact manifold and rather than taking the semi-classical limit (h →), we let h = 1 and study the distribution of large eigenvalues. Bordeaux Montrieux (Loi de Weyl presque sure et resolvante pour des operateurs differentiels non-autoadjoints, these, CMLS, Ecole Polytechnique, 2008. https://pastel.archives-ouvertes.fr/pastel-00005367, Ann Henri Poincare 12:173–204, 2011) studied elliptic systems of differential operators on S1 with random perturbations of the coefficients, and under some additional assumptions, he showed that the large eigenvalues obey the Weyl law almost surely. His analysis was based on a reduction to the s…
Coexistence of hidden attractors and multistability in counterexamples to the Kalman conjecture
2019
The Aizerman and Kalman conjectures played an important role in the theory of global stability for control systems and set two directions for its further development – the search and formulation of sufficient stability conditions, as well as the construction of counterexamples for these conjectures. From the computational perspective the latter problem is nontrivial, since the oscillations in counterexamples are hidden, i.e. their basin of attraction does not intersect with a small neighborhood of an equilibrium. Numerical calculation of initial data of such oscillations for their visualization is a challenging problem. Up to now all known counterexamples to the Kalman conjecture were const…