Search results for " Corte"

showing 10 items of 1865 documents

Somatosensory Brain Function and Gray Matter Regional Volumes Differ According to Exercise History : Evidence from Monozygotic Twins

2017

Associations between long-term physical activity and cortical function and brain structure are poorly known. Our aim was to assess whether brain functional and/or structural modulation associated with long-term physical activity is detectable using a discordant monozygotic male twin pair design. Nine monozygotic male twin pairs were carefully selected for an intrapair difference in their leisure-time physical activity of at least three years duration (mean age 34 ± 1 years). We registered somatosensory mismatch response (SMMR) in EEG to electrical stimulation of fingers and whole brain MR images. We obtained exercise history and measured physical fitness and body composition. Equivalent ele…

0301 basic medicineMaleFITNESSMismatch negativityphysical activityMismatch negativityElectroencephalographycomputer.software_genreSomatosensory systemSuperior temporal gyrus0302 clinical medicineVoxelBrain structureGENERATORSTwin researchGray MatterRadiological and Ultrasound Technologymedicine.diagnostic_testOrgan SizeMagnetic Resonance Imaging3142 Public health care science environmental and occupational healthmedicine.anatomical_structureNeurologyEXCITABILITYHEALTHAnatomyPsychologyAdultsomatosensory cortexMISMATCH NEGATIVITY MMNPOTENTIALS03 medical and health sciencesTIME PHYSICAL-ACTIVITYmedicineBrain electrophysiologyHumansRadiology Nuclear Medicine and imagingMODULATIONExercisekaksostutkimusbrain electrophysiologyPostcentral gyrusPhysical activitybrain structureTwins MonozygoticMedial frontal gyrusTwin studySomatosensory cortex030104 developmental biologyDISCRIMINATIONNeurology (clinical)poikkeavuusnegatiivisuuscomputerNeuroscience030217 neurology & neurosurgeryRESPONSES
researchProduct

Differential role of interleukin-1β in neuroinflammation-induced impairment of spatial and nonspatial memory in hyperammonemic rats.

2019

Activated microglia and increased brain IL-1β play a main role in cognitive impairment in much pathology. We studied the role of IL-1β in neuroinflammation-induced impairment of the following different types of learning and memory: novel object recognition (NOR), novel object location (NOL), spatial learning, reference memory (RM), and working memory (WM). All these processes are impaired in hyperammonemic rats. We assessed which of these types of learning and memory are restored by blocking the IL-1 receptor in vivo in hyperammonemic rats and the possible mechanisms involved. Blocking the IL-1 receptor reversed microglial activation in the hippocampus, perirhinal cortex, and prefrontal cor…

0301 basic medicineMaleInterleukin-1betaPostrhinal cortexHippocampusBiochemistryHippocampusReceptors N-Methyl-D-Aspartate03 medical and health sciences0302 clinical medicineReceptors GABAAmmoniaMemoryPerirhinal cortexGeneticsmedicineMemory impairmentAnimalsHyperammonemiaReceptors AMPARats WistarPrefrontal cortexMolecular BiologyNeuroinflammationCerebral CortexInflammationMicrogliabusiness.industryWorking memoryAnimal FeedRatsInterleukin 1 Receptor Antagonist ProteinProtein Subunits030104 developmental biologymedicine.anatomical_structureGene Expression RegulationReceptors GlutamateMicrogliabusinessNeuroscience030217 neurology & neurosurgeryBiotechnologyFASEB journal : official publication of the Federation of American Societies for Experimental Biology
researchProduct

Maternal inflammation has a profound effect on cortical interneuron development in a stage and subtype-specific manner

2018

AbstractSevere infections during pregnancy are one of the major risk factors for cognitive impairment in the offspring. It has been suggested that maternal inflammation leads to dysfunction of cortical GABAergic interneurons that in turn underlies cognitive impairment of the affected offspring. However, the evidence comes largely from studies of adult or mature brains and how the impairment of inhibitory circuits arises upon maternal inflammation is unknown. Here we show that maternal inflammation affects multiple steps of cortical GABAergic interneuron development, i.e., proliferation of precursor cells, migration and positioning of neuroblasts, as well as neuronal maturation. Importantly,…

0301 basic medicineMaleInterneuronOffspringNeurogenesisMothersInflammationBiologyInhibitory postsynaptic potentialArticle03 medical and health sciencesCellular and Molecular NeuroscienceMice0302 clinical medicineNeuroblastCell MovementInterneuronsPregnancyPrecursor cellmedicineAnimalsCognitive DysfunctionGABAergic NeuronsMolecular BiologyCell ProliferationCerebral CortexInflammationPregnancyCell growthNeurogenesisCognitionmedicine.diseaseMice Inbred C57BLPsychiatry and Mental health030104 developmental biologymedicine.anatomical_structurenervous systemPrenatal Exposure Delayed EffectsGABAergicFemalemedicine.symptomPsychiatric disordersNeuroscience030217 neurology & neurosurgeryNeuroscience
researchProduct

Social stress during adolescence activates long-term microglia inflammation insult in reward processing nuclei

2018

The experience of social stress during adolescence is associated with higher vulnerability to drug use. Increases in the acquisition of cocaine self-administration, in the escalation of cocaine-seeking behavior, and in the conditioned rewarding effects of cocaine have been observed in rodents exposed to repeated social defeat (RSD). In addition, prolonged or severe stress induces a proinflammatory state with microglial activation and increased cytokine production. The aim of the present work was to describe the long-term effects induced by RSD during adolescence on the neuroinflammatory response and synaptic structure by evaluating different glial and neuronal markers. In addition to an inc…

0301 basic medicineMaleMacroglial CellsHippocampuslcsh:MedicineSocial SciencesCell CountPathology and Laboratory MedicineHippocampusSocial defeatMice0302 clinical medicineCocaineAnimal CellsConditioning PsychologicalMedicine and Health SciencesPsychologylcsh:ScienceImmune ResponseNeuronsMultidisciplinaryMicrogliaAnimal BehaviorBrainChemistrymedicine.anatomical_structureBehavioral PharmacologyAnimal SocialityPhysical SciencesMicrogliamedicine.symptomCellular TypesAnatomyResearch ArticleInfralimbic cortexImmunologyPsychological StressInflammationGlial CellsNucleus accumbensProinflammatory cytokine03 medical and health sciencesAlkaloidsSigns and SymptomsRewardDiagnostic MedicineRecreational Drug UseMental Health and PsychiatrymedicineAnimalsMicroglial CellsSocial stressPharmacologyInflammationBehaviorbusiness.industrylcsh:RChemical CompoundsBiology and Life SciencesCell Biology030104 developmental biologyAstrocytesCellular Neurosciencelcsh:QbusinessNeuroscienceZoology030217 neurology & neurosurgeryStress PsychologicalNeuroscience
researchProduct

Characterizing the Molecular Architecture of Cortical Regions Associated with High Educational Attainment in Older Individuals

2019

Neuroimaging investigations have revealed interindividual variations in anatomy, metabolism, activity, and connectivity of specific cortical association areas through which years of education (YoE), as a common proxy of cognitive reserve, may operate in the face of age- or pathology-associated brain changes. However, the associated molecular properties of YoE-related brain regions and the biological pathways involved remain poorly understood. In the present study we first identified brain areas that showed an association between cortical thickness and YoE among 122 cognitively healthy older human individuals (87 female). We subsequently characterized molecular properties of these regions by…

0301 basic medicineMaleMicroarraymetabolism [Prefrontal Cortex]Prefrontal CortexNeuroimagingBiologyGyrus CinguliBiological pathway03 medical and health sciences0302 clinical medicineNeuroimagingCognitive ReserveCortex (anatomy)immunology [Gyrus Cinguli]metabolism [Gyrus Cinguli]Gene expressionmedicineHumansddc:610diagnostic imaging [Gyrus Cinguli]Prefrontal cortexResearch ArticlesCognitive reserveAgedGeneral NeuroscienceGene Expression ProfilingMiddle AgedMental Status and Dementia Testsphysiology [Cognitive Reserve]030104 developmental biologymedicine.anatomical_structureimmunology [Prefrontal Cortex]diagnostic imaging [Prefrontal Cortex]Educational StatusFemaleNeuroscience030217 neurology & neurosurgeryIonotropic effectGenome-Wide Association Study
researchProduct

Pathogenic DDX3X Mutations Impair RNA Metabolism and Neurogenesis during Fetal Cortical Development.

2020

Summary De novo germline mutations in the RNA helicase DDX3X account for 1%–3% of unexplained intellectual disability (ID) cases in females and are associated with autism, brain malformations, and epilepsy. Yet, the developmental and molecular mechanisms by which DDX3X mutations impair brain function are unknown. Here, we use human and mouse genetics and cell biological and biochemical approaches to elucidate mechanisms by which pathogenic DDX3X variants disrupt brain development. We report the largest clinical cohort to date with DDX3X mutations (n = 107), demonstrating a striking correlation between recurrent dominant missense mutations, polymicrogyria, and the most severe clinical outcom…

0301 basic medicineMaleNeurogenesisMutation MissenseBiologyPathogenesisDEAD-box RNA Helicases03 medical and health sciencesMice0302 clinical medicineGermline mutationStress granuleCell Line TumorPolymicrogyriamedicineMissense mutationAnimalsHumansCells CulturedGeneticsCerebral CortexGeneral NeuroscienceNeurogenesismedicine.diseaseRNA Helicase AMice Inbred C57BL030104 developmental biologyNeurodevelopmental DisordersRNAFemaleDDX3X030217 neurology & neurosurgeryNeuron
researchProduct

Attenuated beta rebound to proprioceptive afferent feedback in Parkinson's disease.

2018

AbstractMotor symptoms are defining traits in the diagnosis of Parkinson’s disease (PD). A crucial component in motor function and control of movements is the integration of efferent signals from the motor network to the peripheral motor system, and afferent proprioceptive sensory feedback. Previous studies have indicated abnormal movement-related cortical oscillatory activity in PD, but the role of the proprioceptive afference on abnormal oscillatory activity in PD has not been elucidated. In the present study, we examine the role of proprioception by studying the cortical processing of proprioceptive stimulation in PD patients, ON/OFF levodopa medication, as compared to that of healthy co…

0301 basic medicineMaleParkinson's diseaselcsh:MedicineStimulationAntiparkinson AgentsLevodopa0302 clinical medicineFeedback SensoryMedicine:Science::Medicine [DRNTU]lcsh:Science0303 health sciencesMultidisciplinarymedicine.diagnostic_testMotor CortexMagnetoencephalographyParkinson DiseaseMiddle Aged3. Good healthProprioceptive functioncortexmedicine.anatomical_structureFemaleMotor cortexmedicine.drugAdultLevodopaParkinsonin tautiSensory systemArticle03 medical and health sciencesmotor cortexMotor systemHumans030304 developmental biologyAgedProprioceptionbusiness.industrylcsh:RMagnetoencephalographyIndex fingermedicine.diseaseProprioceptionaivokuori030104 developmental biologylcsh:QbusinessBeta RhythmNeuroscience030217 neurology & neurosurgeryScientific reports
researchProduct

Dietary salt promotes ischemic brain injury and is associated with parenchymal migrasome formation

2018

Sodium chloride promotes vascular fibrosis, arterial hypertension, pro-inflammatory immune cell polarization and endothelial dysfunction, all of which might influence outcomes following stroke. But despite enormous translational relevance, the functional importance of sodium chloride in the pathophysiology of acute ischemic stroke is still unclear. In the current study, we show that high-salt diet leads to significantly worse functional outcomes, increased infarct volumes, and a loss of astrocytes and cortical neurons in acute ischemic stroke. While analyzing the underlying pathologic processes, we identified the migrasome as a novel, sodium chloride-driven pathomechanism in acute ischemic …

0301 basic medicineMalePathologyMacroglial CellsSodium ChlorideVascular MedicineBrain IschemiaMice0302 clinical medicineCytosolAnimal CellsMedicine and Health SciencesMedicineEndothelial dysfunctionStrokeNeuronsCerebral CortexCerebral IschemiaMultidisciplinaryQRPathophysiologyStrokeChemistryNeurologyPhysical SciencesImmunohistochemistryMedicineCellular Structures and OrganellesCellular TypesIntracellularResearch Articlemedicine.medical_specialtyScienceCerebrovascular DiseasesGlial Cells03 medical and health sciencesImmune systemIn vivoParenchymaAnimalscardiovascular diseasesVesiclesSodium Chloride DietaryMicroglial CellsNutritionIschemic StrokeOrganellesbusiness.industryChemical CompoundsBiology and Life SciencesCell Biologymedicine.diseaseDiet030104 developmental biologyCellular NeuroscienceAstrocytesBrain InjuriesSaltsbusiness030217 neurology & neurosurgeryNeurosciencePLoS ONE
researchProduct

NKCC1-Mediated GABAergic Signaling Promotes Postnatal Cell Death in Neocortical Cajal-Retzius Cells.

2016

During early development, a substantial proportion of central neurons undergoes programmed cell death. This activity-dependent process is essential for the proper structural and functional development of the brain. To uncover cell type-specific differences in the regulation of neuronal survival versus apoptosis, we studied activity-regulated cell death in Cajal-Retzius neurons (CRNs) and the overall neuronal population in the developing mouse cerebral cortex. CRNs in the upper neocortical layer represent an early-born neuronal population, which is important for cortical development and largely disappears by apoptosis during neonatal stages. In contrast to the overall neuronal population, ac…

0301 basic medicineMaleProgrammed cell deathCognitive NeuroscienceApoptosisNeocortexReceptors Cell SurfaceBiologygamma-Aminobutyric acid03 medical and health sciencesCellular and Molecular NeuroscienceMice0302 clinical medicinemedicineAnimalsLectins C-TypeGABAergic NeuronsCells Culturedgamma-Aminobutyric AcidMice KnockoutNeocortexGABAA receptorDepolarizationInterstitial Cells of CajalReceptors GABA-AMice Inbred C57BL030104 developmental biologymedicine.anatomical_structurenervous systemAnimals NewbornCerebral cortexApoptosisFemaleSignal transductionNeuroscience030217 neurology & neurosurgerymedicine.drugSignal TransductionCerebral cortex (New York, N.Y. : 1991)
researchProduct

Proteomic Analysis of Brain Region and Sex-Specific Synaptic Protein Expression in the Adult Mouse Brain

2020

Genetic disruption of synaptic proteins results in a whole variety of human neuropsychiatric disorders including intellectual disability, schizophrenia or autism spectrum disorder (ASD). In a wide range of these so-called synaptopathies a sex bias in prevalence and clinical course has been reported. Using an unbiased proteomic approach, we analyzed the proteome at the interaction site of the pre- and postsynaptic compartment, in the prefrontal cortex, hippocampus, striatum and cerebellum of male and female adult C57BL/6J mice. We were able to reveal a specific repertoire of synaptic proteins in different brain areas as it has been implied before. Additionally, we found a region-specific set…

0301 basic medicineMaleProteomicsCerebellumAgingcerebellumProteomehippocampusstriatumHippocampusNerve Tissue ProteinsBiologyArticleSynapse03 medical and health sciences0302 clinical medicinePostsynaptic potentialsynapsemedicinesexAnimalsPrefrontal cortexlcsh:QH301-705.5prefrontal cortexSex CharacteristicsBrainGeneral Medicinemedicine.diseaseMice Inbred C57BL030104 developmental biologymedicine.anatomical_structureGene Ontologylcsh:Biology (General)Autism spectrum disorderSchizophreniaProteomeSynapsesmass spectrometry-based proteomicsautism spectrum disorder (ASD)DDX3XFemaleNeuroscienceSET030217 neurology & neurosurgerySET ; cerebellum ; DDX3X ; striatum ; autism spectrum disorder (ASD) ; hippocampus ; synapse ; sex ; prefrontal cortexCells
researchProduct