Search results for " DYNAMICAL SYSTEM"

showing 10 items of 188 documents

Geometric rigidity of a class of fractal sets

2017

We study geometric rigidity of a class of fractals, which is slightly larger than the collection of self-conformal sets. Namely, using a new method, we shall prove that a set of this class is contained in a smooth submanifold or is totally spread out. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Set (abstract data type)Class (set theory)Pure mathematicsIterated function systemFractalGeneral MathematicsFOS: MathematicsRigidity (psychology)Fractal setDynamical Systems (math.DS)Mathematics - Dynamical SystemsSubmanifoldMathematicsMathematische Nachrichten
researchProduct

MR3730338 Reviewed de Jeu, Marcel(NL-LEID-MI); Tomiyama, Jun(J-TOKYM) The closure of ideals of ℓ1(Σ) in its enveloping C∗-algebra. (English summary) …

2018

Given a compact Hausdorff space X and a homeomorphism σ on X, denote by Σ=(X,σ) a topological dynamical system. Then the associated Banach ∗-algebra ℓ1(Σ) is defined as ℓ1(Σ)={a:Z→C(X), ∥a∥:=∑n∈Z∥a(n)∥<∞} with a crossed product–type product (aa′)(n)=∑k∈Za(k)⋅αk(a′(n−k)) and involution a∗(n)=αn(a(−n))¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯, where C(X) denote the space of complex-valued continuous functions on X, and α(f):=f∘σ−1 for f∈C(X). If C∗(Σ) is the enveloping C∗-algebra of ℓ1(Σ), considering a primitive ideal I of ℓ1(Σ), the authors show that there exists a ∗-representation π of ℓ1(Σ) on Hilbert space such that the kernel is I, and that the closure in C∗(Σ) of an ideal of ℓ1(Σ) is an ideal of C∗(Σ).

Settore MAT/05 - Analisi Matematicainvolutive Banach algebra enveloping C∗-algebra ideal topological dynamical system
researchProduct

ADVANCED MESHLESS NUMERICAL METHODS AND APPLICATIONS

Settore MAT/08 - Analisi NumericaMESHLESS METHOD APPROXIMATION BIO-MATHEMATICS DYNAMICAL SYSTEM SEPARATRIX MOVING LEAST SQUARE SMOOTHED PARTICLE HYDRODYNAMICS IMPROVED FAST GAUSSIAN
researchProduct

Asymptotic properties of incoherent waves propagating in an all-optical regenerators line

2007

International audience; We present an original method to generate optical pulse trains with random time-interval values from incoherent broadband sources. More precisely, our technique relies on the remarkable properties of a line made of cascaded self-phase modulation-based optical regenerators. Depending on the regenerator parameters, various regimes with noticeably different physical behaviors can be reported.

Signal processingNonlinear opticsOptical fiber070.4340 190.3100 190.5530 320.7140Optical communication02 engineering and technology01 natural scienceslaw.invention010309 opticsFour-wave mixing020210 optoelectronics & photonicsOpticslaw0103 physical sciencesDispersion (optics)Optical solitons0202 electrical engineering electronic engineering information engineeringOptical communicationOptical fibersUltrafast processSelf-phase modulationPhysicsOptical amplifier[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industrySignal regenerationAtomic and Molecular Physics and OpticsModulationPulse propagationNonlinear dynamical systemsbusinessSignal regenerationOptics Letters
researchProduct

A proof of bistability for the dual futile cycle

2014

Abstract The multiple futile cycle is an important building block in networks of chemical reactions arising in molecular biology. A typical process which it describes is the addition of n phosphate groups to a protein. It can be modelled by a system of ordinary differential equations depending on parameters. The special case n = 2 is called the dual futile cycle. The main result of this paper is a proof that there are parameter values for which the system of ODE describing the dual futile cycle has two distinct stable stationary solutions. The proof is based on bifurcation theory and geometric singular perturbation theory. An important entity built of three coupled multiple futile cycles is…

Singular perturbationBistabilityFutile cycleMolecular Networks (q-bio.MN)Quantitative Biology::Molecular NetworksApplied MathematicsGeneral EngineeringOdeDynamical Systems (math.DS)General MedicineDual (category theory)Computational MathematicsBifurcation theoryMathematics - Classical Analysis and ODEsFOS: Biological sciencesOrdinary differential equationClassical Analysis and ODEs (math.CA)FOS: MathematicsApplied mathematicsQuantitative Biology - Molecular NetworksMathematics - Dynamical SystemsSpecial caseGeneral Economics Econometrics and FinanceAnalysisMathematicsNonlinear Analysis: Real World Applications
researchProduct

Separatrix reconstruction to identify tipping points in an eco-epidemiological model

2018

Many ecological systems exhibit tipping points such that they suddenly shift from one state to another. These shifts can be devastating from an ecological point of view, and additionally have severe implications for the socio-economic system. They can be caused by overcritical perturbations of the state variables such as external shocks, disease emergence, or species removal. It is therefore important to be able to quantify the tipping points. Here we present a study of the tipping points by considering the basins of attraction of the stable equilibrium points. We address the question of finding the tipping points that lie on the separatrix surface, which partitions the space of system traj…

State variableMathematical optimizationRadial basis functionComputer scienceSeparatrixApplied MathematicsStable equilibriumComputational mathematics010103 numerical & computational mathematicsDynamical systemDynamical system01 natural sciences010101 applied mathematicsRegime shiftComputational MathematicsGroup huntingSettore MAT/08 - Analisi NumericaMoving Least Squares approximationAllee threshold; Dynamical system; Group hunting; Moving Least Squares approximation; Radial basis function; Regime shift; Computational Mathematics; Applied MathematicsRegime shiftPoint (geometry)Statistical physics0101 mathematicsMoving least squaresAllee threshold
researchProduct

Attractors for non-autonomous retarded lattice dynamical systems

2015

AbstractIn this paperwe study a non-autonomous lattice dynamical system with delay. Under rather general growth and dissipative conditions on the nonlinear term,we define a non-autonomous dynamical system and prove the existence of a pullback attractor for such system as well. Both multivalued and single-valued cases are considered.

Statistics and ProbabilityDifferential equations with delayDynamical systems theoryNon-autonomous systemslattice dynamical systemsPullback attractorHamiltonian systemLinear dynamical systemProjected dynamical systemAttractorQA1-939pullback attractorMathematicsNumerical AnalysisApplied MathematicsMathematical analysisdifferential equations with delaynon-autonomous systemsClassical mechanicsLattice dynamical systemsPullback attractorset-valued dynamical systemsSet-valued dynamical systemsLimit setRandom dynamical systemMathematicsAnalysis
researchProduct

Self-stabilizing processes: uniqueness problem for stationary measures and convergence rate in the small-noise limit

2011

In the context of self-stabilizing processes, that is processes attracted by their own law, living in a potential landscape, we investigate different properties of the invariant measures. The interaction between the process and its law leads to nonlinear stochastic differential equations. In [S. Herrmann and J. Tugaut. Electron. J. Probab. 15 (2010) 2087–2116], the authors proved that, for linear interaction and under suitable conditions, there exists a unique symmetric limit measure associated to the set of invariant measures in the small-noise limit. The aim of this study is essentially to point out that this statement leads to the existence, as the noise intensity is small, of one unique…

Statistics and ProbabilityMcKean-Vlasov equationLaplace transformdouble-well potential010102 general mathematicsMathematical analysisFixed-point theoremfixed point theoremDouble-well potentialInvariant (physics)01 natural sciencesself-interacting diffusionuniqueness problem[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]010104 statistics & probabilityRate of convergenceLaplace's methodUniquenessInvariant measureperturbed dynamical systemstationary measures0101 mathematicsLaplace's methodprimary 60G10; secondary: 60J60 60H10 41A60Mathematics
researchProduct

Dynamics of the Selkov oscillator.

2018

A classical example of a mathematical model for oscillations in a biological system is the Selkov oscillator, which is a simple description of glycolysis. It is a system of two ordinary differential equations which, when expressed in dimensionless variables, depends on two parameters. Surprisingly it appears that no complete rigorous analysis of the dynamics of this model has ever been given. In this paper several properties of the dynamics of solutions of the model are established. With a view to studying unbounded solutions a thorough analysis of the Poincar\'e compactification of the system is given. It is proved that for any values of the parameters there are solutions which tend to inf…

Statistics and ProbabilityPeriodicityQuantitative Biology - Subcellular ProcessesClassical exampleFOS: Physical sciencesDynamical Systems (math.DS)01 natural sciencesModels BiologicalGeneral Biochemistry Genetics and Molecular Biology010305 fluids & plasmassymbols.namesake0103 physical sciencesFOS: MathematicsPhysics - Biological PhysicsMathematics - Dynamical Systems0101 mathematicsSubcellular Processes (q-bio.SC)MathematicsGeneral Immunology and MicrobiologyCompactification (physics)Applied Mathematics010102 general mathematicsMathematical analysisGeneral MedicineMathematical ConceptsKineticsMonotone polygonBiological Physics (physics.bio-ph)FOS: Biological sciencesModeling and SimulationBounded functionOrdinary differential equationPoincaré conjecturesymbolsGeneral Agricultural and Biological SciencesGlycolysisDimensionless quantityMathematical biosciences
researchProduct

Modeling interactions between political parties and electors

2017

In this paper we extend some recent results on an operatorial approach to the description of alliances between political parties interacting among themselves and with a basin of electors. In particular, we propose and compare three different models, deducing the dynamics of their related {\em decision functions}, i.e. the attitude of each party to form or not an alliance. In the first model the interactions between each party and their electors are considered. We show that these interactions drive the decision functions towards certain asymptotic values depending on the electors only: this is the {\em perfect party}, which behaves following the electors' suggestions. The second model is an …

Statistics and ProbabilityPhysics - Physics and SocietyDynamical systems theorySpecific timeFOS: Physical sciencesExtension (predicate logic)Physics and Society (physics.soc-ph)Condensed Matter Physics01 natural sciencesDecision making Dynamical systems Quantum models in macroscopic systems010305 fluids & plasmasPoliticsAllianceQuartic function0103 physical sciences010306 general physicsMathematical economicsSettore MAT/07 - Fisica MatematicaMathematics
researchProduct