Search results for " DYNAMICAL SYSTEM"

showing 10 items of 188 documents

The X-Ray Transform for Connections in Negative Curvature

2016

We consider integral geometry inverse problems for unitary connections and skew-Hermitian Higgs fields on manifolds with negative sectional curvature. The results apply to manifolds in any dimension, with or without boundary, and also in the presence of trapped geodesics. In the boundary case, we show injectivity of the attenuated ray transform on tensor fields with values in a Hermitian bundle (i.e. vector valued case). We also show that a connection and Higgs field on a Hermitian bundle are determined up to gauge by the knowledge of the parallel transport between boundary points along all possible geodesics. The main tools are an energy identity, the Pestov identity with a unitary connect…

Mathematics - Differential GeometryPure mathematicsHermitian bundlesGeodesic[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Connection (vector bundle)Boundary (topology)Dynamical Systems (math.DS)X-ray transforms01 natural sciencesinversio-ongelmatHiggs fieldsTensor fieldMathematics - Analysis of PDEsFOS: MathematicsSectional curvatureMathematics - Dynamical Systems0101 mathematicsmath.APMathematical PhysicsPhysicsX-ray transformParallel transport010102 general mathematicsStatistical and Nonlinear Physicsconnections010101 applied mathematicsHiggs fieldmath.DGDifferential Geometry (math.DG)[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]Mathematics::Differential Geometrymath.DSAnalysis of PDEs (math.AP)[MATH.MATH-SP]Mathematics [math]/Spectral Theory [math.SP]Communications in Mathematical Physics
researchProduct

Invariant Jordan curves of Sierpinski carpet rational maps

2015

In this paper, we prove that if $R\colon\widehat{\mathbb{C}}\to\widehat{\mathbb{C}}$ is a postcritically finite rational map with Julia set homeomorphic to the Sierpi\'nski carpet, then there is an integer $n_0$, such that, for any $n\ge n_0$, there exists an $R^n$-invariant Jordan curve $\Gamma$ containing the postcritical set of $R$.

Mathematics::Dynamical SystemsGeneral Mathematics[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]rational functionsMathematics::General TopologyDynamical Systems (math.DS)01 natural sciences37F10Combinatoricsexpanding Thusrston mapssymbols.namesakeHigh Energy Physics::TheoryMathematics::Quantum AlgebraFOS: MathematicsMathematics::Metric GeometryMathematics - Dynamical Systems0101 mathematicsInvariant (mathematics)MathematicsmatematiikkamathematicsSierpinski carpet Julia setsApplied Mathematicsta111010102 general mathematicsinvariant Jordan curveJulia setJordan curve theoremrationaalifunktiot010101 applied mathematicsrational mapsSierpinski carpetsymbols
researchProduct

Centralizers of C^1-generic diffeomorphisms

2006

On the one hand, we prove that the spaces of C^1 symplectomorphisms and of C^1 volume-preserving diffeomorphisms both contain residual subsets of diffeomorphisms whose centralizers are trivial. On the other hand, we show that the space of C^1 diffeomorphisms of the circle and a non-empty open set of C^1 diffeomorphisms of the two-sphere contain dense subsets of diffeomorphisms whose centralizer has a sub-group isomorphic to R.

Mathematics::Dynamical Systems[ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]FOS: Mathematics[MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)Mathematics - Dynamical SystemsMathematics::Symplectic Geometry
researchProduct

The centralizer of a C1 generic diffeomorphism is trivial

2007

In this announcement, we describe the solution in the C1 topology to a question asked by S. Smale on the genericity of trivial centralizers: the set of diffeomorphisms of a compact connected manifold with trivial centralizer residual in Diff^1 but does not contain an open and dense subset.

Mathematics::Dynamical Systems[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS][ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS]FOS: Mathematics[MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)Mathematics - Dynamical SystemsMathematics::Geometric TopologyMathematics::Symplectic Geometry
researchProduct

Pseudo-rotations of the closed annulus : variation on a theorem of J. Kwapisz

2003

Consider a homeomorphism h of the closed annulus S^1*[0,1], isotopic to the identity, such that the rotation set of h is reduced to a single irrational number alpha (we say that h is an irrational pseudo-rotation). For every positive integer n, we prove that there exists a simple arc gamma joining one of the boundary component of the annulus to the other one, such that gamma is disjoint from its n first iterates under h. As a corollary, we obtain that the rigid rotation of angle alpha can be approximated by homeomorphisms conjugate to h. The first result stated above is an analog of a theorem of J. Kwapisz dealing with diffeomorphisms of the two-torus; we give some new, purely two-dimension…

Mathematics::Dynamical Systems[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS][ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS]General Physics and AstronomyBoundary (topology)Dynamical Systems (math.DS)Disjoint sets01 natural sciences37E45 37E30CombinatoricsInteger0103 physical sciencesFOS: Mathematics0101 mathematicsMathematics - Dynamical SystemsMathematical PhysicsMathematicsApplied Mathematics010102 general mathematicsStatistical and Nonlinear PhysicsAnnulus (mathematics)TorusMathematics::Geometric TopologyHomeomorphismIterated function010307 mathematical physicsDiffeomorphism
researchProduct

Algebras of frequently hypercyclic vectors

2019

We show that the multiples of the backward shift operator on the spaces $\ell_{p}$, $1\leq p<\infty$, or $c_{0}$, when endowed with coordinatewise multiplication, do not possess frequently hypercyclic algebras. More generally, we characterize the existence of algebras of $\mathcal{A}$-hypercyclic vectors for these operators. We also show that the differentiation operator on the space of entire functions, when endowed with the Hadamard product, does not possess frequently hypercyclic algebras. On the other hand, we show that for any frequently hypercyclic operator $T$ on any Banach space, $FHC(T)$ is algebrable for a suitable product, and in some cases it is even strongly algebrable.

Mathematics::Functional AnalysisPure mathematicsGeneral MathematicsEntire function010102 general mathematicsBanach spaceDynamical Systems (math.DS)Shift operatorSpace (mathematics)01 natural sciences010101 applied mathematicsStatistics::Machine LearningOperator (computer programming)Product (mathematics)Banach algebraFOS: MathematicsHadamard productMathematics - Dynamical Systems0101 mathematics47A16MathematicsMathematische Nachrichten
researchProduct

An extension of Weyl's equidistribution theorem to generalized polynomials and applications

2019

Generalized polynomials are mappings obtained from the conventional polynomials by the use of operations of addition, multiplication and taking the integer part. Extending the classical theorem of H. Weyl on equidistribution of polynomials, we show that a generalized polynomial $q(n)$ has the property that the sequence $(q(n) \lambda)_{n \in \mathbb{Z}}$ is well distributed $\bmod \, 1$ for all but countably many $\lambda \in \mathbb{R}$ if and only if $\lim\limits_{\substack{|n| \rightarrow \infty n \notin J}} |q(n)| = \infty$ for some (possibly empty) set $J$ having zero density in $\mathbb{Z}$. We also prove a version of this theorem along the primes (which may be viewed as an extension …

Mathematics::Number TheoryFOS: MathematicsDynamical Systems (math.DS)Mathematics - Dynamical Systems
researchProduct

Redundant Picard–Fuchs System for Abelian Integrals

2001

We derive an explicit system of Picard-Fuchs differential equations satisfied by Abelian integrals of monomial forms and majorize its coefficients. A peculiar feature of this construction is that the system admitting such explicit majorants, appears only in dimension approximately two times greater than the standard Picard-Fuchs system. The result is used to obtain a partial solution to the tangential Hilbert 16th problem. We establish upper bounds for the number of zeros of arbitrary Abelian integrals on a positive distance from the critical locus. Under the additional assumption that the critical values of the Hamiltonian are distant from each other (after a proper normalization), we were…

MonomialPure mathematicsDynamical systems theoryDifferential equationDynamical Systems (math.DS)symbols.namesakeFOS: MathematicsMathematics - Dynamical SystemsAbelian groupComplex Variables (math.CV)Complex quadratic polynomialMathematicsDiscrete mathematicsMathematics - Complex Variables14D0514K20Applied Mathematics32S4034C0834C07symbolsEquivariant mapLocus (mathematics)Hamiltonian (quantum mechanics)32S2034C07; 34C08; 32S40; 14D05; 14K20; 32S20AnalysisJournal of Differential Equations
researchProduct

Response determination of linear dynamical systems with singular matrices: A polynomial matrix theory approach

2017

Abstract An approach is developed based on polynomial matrix theory for formulating the equations of motion and for determining the response of multi-degree-of-freedom (MDOF) linear dynamical systems with singular matrices and subject to linear constraints. This system modeling may appear for reasons such as utilizing redundant DOFs, and can be advantageous from a computational cost perspective, especially for complex (multi-body) systems. The herein developed approach can be construed as an alternative to the recently proposed methodology by Udwadia and coworkers, and has the significant advantage that it circumvents the use of pseudoinverses in determining the system response. In fact, ba…

Multibody system0209 industrial biotechnologyMathematical optimizationPolynomialApplied Mathematics02 engineering and technologyLinear constrained structural/mechanical systemPolynomial matrix theoryMatrix multiplicationPolynomial matrixMatrix polynomialLinear dynamical systemMatrix (mathematics)020303 mechanical engineering & transports020901 industrial engineering & automation0203 mechanical engineeringMatrix splittingModeling and SimulationApplied mathematicsMatrix analysisClosed form solutionSingular matrixMathematics
researchProduct

Instability of Equilibrium States for Coupled Heat Reservoirs at Different Temperatures

2007

Abstract We consider quantum systems consisting of a “small” system coupled to two reservoirs (called open systems). We show that such systems have no equilibrium states normal with respect to any state of the decoupled system in which the reservoirs are at different temperatures, provided that either the temperatures or the temperature difference divided by the product of the temperatures are not too small. Our proof involves an elaborate spectral analysis of a general class of generators of the dynamics of open quantum systems, including quantum Liouville operators (“positive temperature Hamiltonians”) which generate the dynamics of the systems under consideration.

Non-equilibrium quantum theoryQuantum dynamicsLiouville operators82C10; 47N50FOS: Physical sciencesFeshbach mapQuantum phasesSpectral deformation theory01 natural sciencesOpen quantum systemQuantum mechanics0103 physical sciencesQuantum operationStatistical physics0101 mathematicsQuantum statistical mechanicsMathematical PhysicsMathematicsQuantum discord82C10010102 general mathematicsMathematical Physics (math-ph)Quantum dynamical systemsQuantum process47N50010307 mathematical physicsQuantum dissipationAnalysis
researchProduct