Search results for " Dark Matter"

showing 10 items of 159 documents

Ultralight dark photon as a model for early universe dark matter

2019

Dark photon is a massive vector field which interacts only with the physical photon through the kinetic mixing. This coupling is assumed to be weak so that the dark photon becomes almost unobservable in processes with elementary particles, but can serve as a dark matter particle. We argue that in very early Universe ($z>3000$) this vector field may have the equation of state of radiation ($w=1/3$) but later behaves as cold dark matter ($w=0$). This may slightly change the expansion rate of the Universe at early time and reduce the value of the sound horizon of baryon acoustic oscillations (standard ruler). As a result, in this model the value of the Hubble constant appears to be larger than…

PhysicsParticle physicsCold dark matterCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsEquation of state (cosmology)Dark matterOrder (ring theory)FOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsCoupling (probability)01 natural sciencesDark photonsymbols.namesakeHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencessymbolsBaryon acoustic oscillations010306 general physicsHubble's lawAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Nonminimal dark sector physics and cosmological tensions

2019

We explore whether non-standard dark sector physics might be required to solve the existing cosmological tensions. The properties we consider in combination are an interaction between the dark matter and dark energy components, and a dark energy equation of state $w$ different from that of the canonical cosmological constant $w=-1$. In principle, these two parameters are independent. In practice, to avoid early-time, superhorizon instabilities, their allowed parameter spaces are correlated. We analyze three classes of extended interacting dark energy models in light of the 2019 Planck CMB results and Cepheid-calibrated local distance ladder $H_0$ measurements of Riess et al. (R19), as well …

PhysicsParticle physicsCold dark matterCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsEquation of state (cosmology)FOS: Physical sciencesCosmological constantGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsType (model theory)Coupling (probability)01 natural sciencesGeneral Relativity and Quantum CosmologyHigh Energy Physics - Phenomenologysymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)13. Climate action0103 physical sciencesDark energysymbolsPlanck010306 general physicsAstrophysics - Cosmology and Nongalactic AstrophysicsQuintessence
researchProduct

Cosmological searches for a non-cold dark matter component

2017

We explore an extended cosmological scenario where the dark matter is an admixture of cold and additional non-cold species. The mass and temperature of the non-cold dark matter particles are extracted from a number of cosmological measurements. Among others, we consider tomographic weak lensing data and Milky Way dwarf satellite galaxy counts. We also study the potential of these scenarios in alleviating the existing tensions between local measurements and Cosmic Microwave Background (CMB) estimates of the $S_8$ parameter, with $S_8=\sigma_8\sqrt{\Omega_m}$, and of the Hubble constant $H_0$. In principle, a sub-dominant, non-cold dark matter particle with a mass $m_X\sim$~keV, could achieve…

PhysicsParticle physicsCold dark matterCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsHot dark matterDark matterScalar field dark matterFOS: Physical sciencesLambda-CDM modelAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciences0103 physical sciencesMixed dark matterWarm dark matter010303 astronomy & astrophysicsWeak gravitational lensingAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Observational properties of feebly coupled dark matter

2016

We show that decoupled hidden sectors can have observational consequences. As a representative model example, we study dark matter production in the Higgs portal model with one real singlet scalar $s$ coupled to the Standard Model Higgs via $\lambda_{\rm hs}\Phi^\dagger\Phi s^2$ and demonstrate how the combination of non-observation of cosmological isocurvature perturbations and astrophysical limits on dark matter self-interactions imply stringent bounds on the magnitude of the scalar self-coupling $\lambda_{\rm s}s^4$. For example, for dark matter mass $m_{\rm s}=10$ MeV and Hubble scale during cosmic inflation $H_*=10^{12}$ GeV, we find $10^{-4}\lesssim \lambda_{\rm s}\lesssim 0.2$.

PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Dark matterHigh Energy Physics::PhenomenologyScalar field dark matterFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysicsdark matterStandard ModelHidden sectorpimeä aineHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Higgs bosonProduction (computer science)Light dark matterDark fluidAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Is it mixed dark matter or neutrino masses?

2018

In this paper, we explore a scenario where the dark matter is a mixture of interacting and non interacting species. Assuming dark matter-photon interactions for the interacting species, we find that the suppression of the matter power spectrum in this scenario can mimic that expected in the case of massive neutrinos. Our numerical studies include present limits from Planck Cosmic Microwave Background data, which render the strength of the dark matter photon interaction unconstrained when the fraction of interacting dark matter is small. Despite the large entangling between mixed dark matter and neutrino masses, we show that future measurements from the Dark Energy Instrument (DESI) could he…

PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Photon010308 nuclear & particles physicsMatter power spectrumCosmic microwave backgroundDark matterFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencessymbols.namesake0103 physical sciencesMixed dark matterDark energysymbolsNeutrinoPlanck[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - Cosmology and Nongalactic AstrophysicsJournal of Cosmology and Astroparticle Physics
researchProduct

Radiative Seesaw Dark Matter

2021

The singlet majoron model of seesaw neutrino mass is appended by one dark Majorana fermion singlet $\chi$ with $L=2$ and one dark complex scalar singlet $\zeta$ with $L=1$. This simple setup allows $\chi$ to obtain a small radiative mass anchored by the same heavy right-handed neutrinos, whereas the one-loop decay of the standard-model Higgs boson to $\chi \chi + \bar{\chi} \bar{\chi}$ provides the freeze-in mechanism for $\chi$ to be the light dark matter of the Universe.

PhysicsParticle physicsDark matterHigh Energy Physics::PhenomenologyFOS: Physical sciencesStandard ModelHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Seesaw molecular geometryHiggs bosonHigh Energy Physics::ExperimentNeutrinoLight dark matterMajorana fermionMajoron
researchProduct

New Methods of Axion Dark Matter Detection

2017

In this chapter, I consider new linear effects of axion (pseudoscalar) dark matter in atoms, molecules, nuclei and neutrons.

PhysicsParticle physicsHigh Energy Physics::LatticeHigh Energy Physics::PhenomenologyNuclear TheoryDark matterScalar field dark matterPseudoscalarHigh Energy Physics::TheoryMixed dark matterWarm dark matterNeutronNuclear ExperimentAxion
researchProduct

Prediction for the lightest Higgs boson mass in the CMSSM using indirect experimental constraints

2007

Measurements at low energies provide interesting indirect information about masses of particles that are (so far) too heavy to be produced directly. Motivated by recent progress in consistently and rigorously calculating electroweak precision observables and flavour related observables, we derive the preferred value for m_h in the Constrained Minimal Supersymmetric Standard Model (CMSSM), obtained from a fit taking into account electroweak precision data, flavour physics observables and the abundance of Cold Dark Matter. No restriction is imposed on m_h itself: the experimental bound from direct Higgs boson search at LEP is not included in the fit. A multi-parameter chi^2 is minimized with …

PhysicsParticle physicsNuclear and High Energy PhysicsCold dark matterHigh Energy Physics::LatticeDark matterElectroweak interactionHigh Energy Physics::PhenomenologyFOS: Physical sciencesObservableStandard ModelHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Higgs bosonHigh Energy Physics::ExperimentParticle Physics - ExperimentMinimal Supersymmetric Standard ModelFree parameterParticle Physics - Phenomenology
researchProduct

New Methods of Scalar Dark Matter Detection

2017

In this chapter, I consider new mechanisms for the induction of a cosmological evolution of the fundamental constants (such as the electromagnetic fine-structure constant \(\alpha \) and the particle masses) by dark matter. By investigating the effects of “slow drifts” and oscillating variations of the fundamental constants due to dark matter in astrophysical phenomena, including Big Bang nucleosynthesis and cosmic microwave background radiation measurements, and laboratory clock-comparison experiments, I derive new limits on certain interactions of dark matter with ordinary matter that improve on previous limits by up to 15 orders of magnitude, as well as the first ever limits on several o…

PhysicsParticle physicsOrders of magnitude (time)Big Bang nucleosynthesisDark matterScalar (mathematics)Cosmic microwave backgroundScalar field dark matterParticleAstrophysics::Cosmology and Extragalactic AstrophysicsConstant (mathematics)
researchProduct

Self-interacting dark matter and cosmology of a light scalar mediator

2016

We consider a fermionic dark matter candidate interacting via a scalar mediator coupled with the Standard Model through a Higgs portal. We consider a general setting including both scalar and pseudoscalar interactions between the scalar and fermion, and illustrate the relevant features for dark matter abundance, direct search limits and collider constraints. The case where dark matter has a self-interaction strength $⟨{\ensuremath{\sigma}}_{V}⟩/{m}_{\ensuremath{\psi}}\ensuremath{\sim}0.1--1\text{ }\text{ }{\mathrm{cm}}^{2}/\mathrm{g}$ is strongly constrained, in particular by the big bang nucleosynthesis. We show that these constraints can be alleviated by introducing a new light sterile ne…

PhysicsParticle physicsStandard Modelta114010308 nuclear & particles physicsHot dark matterPhysics beyond the Standard ModelScalar field dark matterscalar mediators01 natural sciencesdark matterStandard ModelPseudoscalarsterile neutrinosWeakly interacting massive particlesfermions0103 physical sciencesGravitino010306 general physicsLight dark matterPhysical Review D
researchProduct