Search results for " Dark Matter"

showing 10 items of 159 documents

Measurement of the Cosmic Ray Helium Energy Spectrum from 70 GeV to 80 TeV with the DAMPE Space Mission

2021

The measurement of the energy spectrum of cosmic ray helium nuclei from 70 GeV to 80 TeV using 4.5 years of data recorded by the DArk Matter Particle Explorer (DAMPE) is reported in this work. A hardening of the spectrum is observed at an energy of about 1.3 TeV, similar to previous observations. In addition, a spectral softening at about 34 TeV is revealed for the first time with large statistics and well controlled systematic uncertainties, with an overall significance of $4.3\sigma$. The DAMPE spectral measurements of both cosmic protons and helium nuclei suggest a particle charge dependent softening energy, although with current uncertainties a dependence on the number of nucleons canno…

Astrophysics::High Energy Astrophysical PhenomenaDark matterGeneral Physics and Astronomychemistry.chemical_elementFOS: Physical sciencesCosmic raySpace (mathematics)01 natural sciences7. Clean energyCosmic ray heliumHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesEnergy spectrumcosmic rays dark matter spacecrystals010306 general physicsHeliumPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)COSMIC cancer databasedetectorSettore FIS/01 - Fisica SperimentalecalibrationchemistryParticleAstrophysics - High Energy Astrophysical PhenomenaNucleonperformance
researchProduct

Cosmic Dark Radiation and Neutrinos

2013

New measurements of the cosmic microwave background (CMB) by the Planck mission have greatly increased our knowledge about the universe. Dark radiation, a weakly interacting component of radiation, is one of the important ingredients in our cosmological model which is testable by Planck and other observational probes. At the moment, the possible existence of dark radiation is an unsolved question. For instance, the discrepancy between the value of the Hubble constant, H-0, inferred from the Planck data and local measurements of H-0 can to some extent be alleviated by enlarging the minimal ACDM model to include additional relativistic degrees of freedom. From a fundamental physics point of v…

Big BangNuclear and High Energy PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Article SubjectAge of the universeDark matterFOS: Physical sciencesLambda-CDM modelAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesBayron acoustic-Oscillationssymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)Analytic approach0103 physical sciencesPlanck010306 general physicsPhysicsAstrophysics - Cosmology and Extragalactic Astrophysics010308 nuclear & particles physicsHot dark matterFísicalcsh:QC1-999High Energy Physics - Phenomenology13. Climate actionDark radiationDark energysymbolslcsh:PhysicsAstrophysics - Cosmology and Nongalactic AstrophysicsAdvances in High Energy Physics
researchProduct

Uncertainty on w from large-scale structure

2012

We find that if we live at the center of an inhomogeneity with total density contrast of roughly 0.1, dark energy is not a cosmological constant at 95% confidence level. Observational constraints on the equation of state of dark energy, w, depend strongly on the local matter density around the observer. We model the local inhomogeneity with an exact spherically symmetric solution which features a pressureless matter component and a dark-energy fluid with constant equation of state and negligible sound speed, that reaches a homogeneous solution at finite radius. We fit this model to observations of the local expansion rate, distant supernovae and the cosmic microwave background. We conclude …

Big BangPhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)ta114010308 nuclear & particles physicsEquation of state (cosmology)Scalar field dark matterFOS: Physical sciencesAstronomy and AstrophysicsLambda-CDM modelGeneral Relativity and Quantum Cosmology (gr-qc)Cosmological constantAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesGeneral Relativity and Quantum CosmologyComputational physicsThermodynamics of the universeSpace and Planetary ScienceQuantum mechanics0103 physical sciencesDark energy010303 astronomy & astrophysicsDark fluidAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Sensitivity of the Cherenkov Telescope Array to a dark matter signal from the Galactic centre

2021

Full list of authors: Acharyya, A.; Adam, R.; Adams, C.; Agudo, I.; Aguirre-Santaella, A.; Alfaro, R.; Alfaro, J.; Alispach, C.; Aloisio, R.; Alves Batista, R.; Amati, L.; Ambrosi, G.; Angüner, E. O.; Antonelli, L. A.; Aramo, C.; Araudo, A.; Armstrong, T.; Arqueros, F.; Asano, K.; Ascasíbar, Y. Ashley, M.; Balazs, C.; Ballester, O.; Baquero Larriva, A.; Barbosa Martins, V.; Barkov, M.; Barres de Almeida, U.; Barrio, J. A.; Bastieri, D.; Becerra, J.; Beck, G.; Becker Tjus, J.; Benbow, W.; Benito, M.; Berge, D.; Bernardini, E.; Bernlöhr, K.; Berti, A.; Bertucci, B.; Beshley, V.; Biasuzzi, B.; Biland, A.; Bissaldi, E.; Biteau, J.; Blanch, O.; Blazek, J.; Bocchino, F.; Boisson, C.; Bonneau Arbe…

Cherenkov Telescope ArrayMATÉRIA ESCURAscale: TeVAstronomyatmosphere [Cherenkov counter]dark matter experimentDark matter theoryenergy resolutionGamma ray experimentsParticleAstrophysicscosmic background radiation01 natural sciences7. Clean energyHigh Energy Physics - Phenomenology (hep-ph)benchmarkWIMPHESSenergy: fluxTeV [scale]relativistic [charged particle]gamma ray experimentMAGIC (telescope)Monte CarloEvent reconstructionPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Contractionspatial distributiontrack data analysisPhysicsdensity [dark matter]ClumpyAstrophysics::Instrumentation and Methods for AstrophysicsimagingHigh Energy Physics - Phenomenologydark matter experiments; dark matter theory; gamma ray experiments; galaxy morphologyDark matter experimentsFísica nuclearVERITASAstrophysics - High Energy Astrophysical PhenomenaSimulationsnoiseWIMPAstrophysics::High Energy Astrophysical PhenomenaDark mattersatelliteCosmic background radiationFOS: Physical sciencesAnnihilationdark matter: densityAstrophysics::Cosmology and Extragalactic AstrophysicsCherenkov counter: atmosphereheavy [dark matter]530annihilation [dark matter]GLASTDark matter experiments; Dark matter theory; Galaxy morphology; Gamma ray experimentscosmic radiation [p]0103 physical sciencesCherenkov [radiation]Candidatesddc:530AGNCherenkov radiationRadiative Processesthermal [cross section]010308 nuclear & particles physicsFísicadark matter: annihilationGamma-Ray SignalsCherenkov Telescope Array ; dark matter ; Galactic Center ; TeV gamma-ray astronomyAstronomy and AstrophysicsMassCherenkov Telescope Arrayradiation: CherenkovsensitivityMAGICGalaxyAstronomíadark matter: heavygamma rayp: cosmic radiation[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]correlationcharged particle: relativisticflux [energy]Galaxy morphology/dk/atira/pure/subjectarea/asjc/3100/3103galaxysupersymmetry[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]cross section: thermal
researchProduct

Search for topological defect dark matter with a global network of optical magnetometers

2021

Ultralight bosons such as axion-like particles are viable candidates for dark matter. They can form stable, macroscopic field configurations in the form of topological defects that could concentrate the dark matter density into many distinct, compact spatial regions that are small compared with the Galaxy but much larger than the Earth. Here we report the results of the search for transient signals from the domain walls of axion-like particles by using the global network of optical magnetometers for exotic (GNOME) physics searches. We search the data, consisting of correlated measurements from optical atomic magnetometers located in laboratories all over the world, for patterns of signals p…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsAtomic Physics (physics.atom-ph)Particle physicsGeneral Physics and AstronomyFOS: Physical sciences53001 natural sciencesArticleHigh Energy Physics - ExperimentPhysics - Atomic PhysicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesDark energy and dark matterddc:530Atomic and molecular physics010306 general physicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Radio data and synchrotron emission in consistent cosmic ray models

2011

It is well established that phenomenological two-zone diffusion models of the galactic halo can very well reproduce cosmic-ray nuclear data and the observed antiproton flux. Here, we consider lepton propagation in such models and compute the expected galactic population of electrons, as well as the diffuse synchrotron emission that results from their interaction with galactic magnetic fields. We find models in agreement not only with cosmic ray data but also with radio surveys at essentially all frequencies. Requiring such a globally consistent description strongly disfavors very large ($L\gtrsim 15$ kpc) and, even stronger, small ($L\lesssim 1$ kpc) effective diffusive halo sizes. This has…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Astrophysics::High Energy Astrophysical PhenomenaPopulationDark matterFOS: Physical sciencesSynchrotron radiationCosmic rayAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesGalactic haloHigh Energy Physics - Phenomenology (hep-ph)0103 physical scienceseducation010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicseducation.field_of_studydark matter theorycosmic ray theory; dark matter theory010308 nuclear & particles physicsAstronomy and Astrophysicscosmic ray theoryAstrophysics - Astrophysics of GalaxiesHigh Energy Physics - PhenomenologyAntiprotonAstrophysics of Galaxies (astro-ph.GA)HaloAstrophysics - Cosmology and Nongalactic AstrophysicsRadio waveJournal of Cosmology and Astroparticle Physics
researchProduct

Stochastic fluctuations of bosonic dark matter

2021

Numerous theories extending beyond the standard model of particle physics predict the existence of bosons that could constitute the dark matter (DM) permeating the universe. In the standard halo model (SHM) of galactic dark matter the velocity distribution of the bosonic DM field defines a characteristic coherence time $\tau_c$. Until recently, laboratory experiments searching for bosonic DM fields have been in the regime where the measurement time $T$ significantly exceeds $\tau_c$, so null results have been interpreted as constraints on the coupling of bosonic DM to standard model particles with a bosonic DM field amplitude $\Phi_0$ fixed by the average local DM density. However, motivate…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Atomic Physics (physics.atom-ph)530 PhysicsScienceQFOS: Physical sciences500Astrophysics::Cosmology and Extragalactic Astrophysics530 PhysikCharacterization and analytical techniquesArticlePhysics - Atomic PhysicsHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Dark energy and dark matterddc:500Astrophysics - Cosmology and Nongalactic AstrophysicsNature Communications
researchProduct

Real- and redshift-space halo clustering in $f(R)$ cosmologies

2016

We present two-point correlation function statistics of the mass and the halos in the chameleon $f(R)$ modified gravity scenario using a series of large volume N-body simulations. Three distinct variations of $f(R)$ are considered (F4, F5 and F6) and compared to a fiducial $\Lambda$CDM model in the redshift range $z \in [0,1]$. We find that the matter clustering is indistinguishable for all models except for F4, which shows a significantly steeper slope. The ratio of the redshift- to real-space correlation function at scales $> 20 h^{-1} \mathrm{Mpc}$ agrees with the linear General Relativity (GR) Kaiser formula for the viable $f(R)$ models considered. We consider three halo populations cha…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Cold dark matterDark matterFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysicsdark energy [cosmology]Correlation function (astronomy)ST/K00042X/101 natural sciencesST/H008519/10103 physical sciencesHalo effectdata analysis [methods]010303 astronomy & astrophysicsSTFCGalaxy clusterAstrophysics::Galaxy Astrophysicslarge-scale structure of Universe [cosmology]Physicstheory [cosmology]010308 nuclear & particles physicsRCUKAstronomyAstronomy and AstrophysicsST/K003267/1RedshiftGalaxygravitationSpace and Planetary ScienceHaloST/L00075X/1Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Cold dark matter plus not-so-clumpy dark relics

2017

Various particle physics models suggest that, besides the (nearly) cold dark matter that accounts for current observations, additional but sub-dominant dark relics might exist. These could be warm, hot, or even contribute as dark radiation. We present here a comprehensive study of two-component dark matter scenarios, where the first component is assumed to be cold, and the second is a non-cold thermal relic. Considering the cases where the non-cold dark matter species could be either a fermion or a boson, we derive consistent upper limits on the non-cold dark relic energy density for a very large range of velocity dispersions, covering the entire range from dark radiation to cold dark matte…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Cold dark matterMilky WayCosmic microwave backgroundDark matterFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics7. Clean energy01 natural sciencessymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesPlanck010303 astronomy & astrophysicsCondensed Matter::Quantum GasesPhysics010308 nuclear & particles physicsMatter power spectrumAstronomy and AstrophysicsBaryonHigh Energy Physics - Phenomenology13. Climate actionDark radiationsymbolsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Wavelet analysis of baryon acoustic structures in the galaxy distribution

2011

Baryon Acoustic Oscillations (BAO) are a feature imprinted in the density field by acoustic waves travelling in the plasma of the early universe. Their fixed scale can be used as a standard ruler to study the geometry of the universe. BAO have been previously detected using correlation functions and power spectra of the galaxy distribution. In this work, we present a new method for the detection of the real-space structures associated with this feature. These baryon acoustic structures are spherical shells with a relatively small density contrast, surrounding high density central regions. We design a specific wavelet adapted to the search for shells, and exploit the physics of the process b…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Cold dark mattermedia_common.quotation_subjectFOS: Physical sciencesContext (language use)AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciences0103 physical sciencesDensity contrast010303 astronomy & astrophysicsmedia_commonPhysicsmethods: statistical[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsgalaxies: cluster: generalAstronomy and AstrophysicsAcoustic wavecosmology: distance scalecosmology: large-scale structure of Universemethods: data analysisUniverseGalaxyBaryonSpace and Planetary ScienceBaryon acoustic oscillationsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct