Search results for " Defects"

showing 10 items of 294 documents

Controlling the molecular diffusion in MOFs with the acidity of monocarboxylate modulators.

2021

The catalytic performance of metal-organic frameworks (MOFs) is related to their physicochemical properties, such as particle size, defect-chemistry and porosity, which synthetic control can be potentially achieved by coordination modulation. By combining PXRD, 1HNMR, FT-IR, N2 uptake measurements we have found insights that the different types of defects (missing linker or missing clusters consequence of the spatial distribution of missing linkers, and the combination of both) could be controlled by the type of modulator employed. We show that the molar percent of defects, either as missing linkers or as part of missing cluster defects, is related to the modulator’s acidity and subse…

Molecular diffusionMetal-Organic Frameworks Defects Coordination modulation Heterogeneous Catalysis010405 organic chemistryChemistry010402 general chemistry01 natural sciences0104 chemical sciencesCatalysisInorganic ChemistryChemical engineeringCluster (physics)Particle sizePorosityMesoporous materialLinkerPowder diffractionDalton transactions (Cambridge, England : 2003)
researchProduct

Investigating the effect of residual stress on hydrogen cracking in multi-pass robotic welding through process compatible non-destructive testing

2021

Abstract In this paper, the effect of Welding Residual Stress (WRS) on the size and morphology of hydrogen-induced cracks (HIC) is studied. Four samples were manufactured using a 6-axis welding robot and in two separate batches. The difference between the two batches was the clamping system used, which resulted in different amounts of welding deformation and WRS. The hydrogen cracks were intentionally manufactured in the samples using a localised water-quenching method, where water was sprayed over a specific weld pass in a predetermined position. The Phased-Array Ultrasonic Testing (PAUT) system was implemented during the welding process (high-temperature in-process method), to detect the …

Multi-pass robotic welding0209 industrial biotechnologyMaterials scienceStrategy and ManagementTK02 engineering and technologyWeldingManagement Science and Operations ResearchIndustrial and Manufacturing Engineeringlaw.inventionRobot weldingHole-drilling methodSettore ING-IND/14 - Progettazione Meccanica E Costruzione Di Macchine020901 industrial engineering & automationIntentionally-embedded weld defectsResidual stresslawNondestructive testingComposite materialHole drilling methodbusiness.industryWelding residual stress (WRS)Ultrasonic testingPhased array ultrasonic testing (PAUT)021001 nanoscience & nanotechnologyClampingHydrogen induced crack (HIC)0210 nano-technologybusinessHydrogen embrittlement
researchProduct

Kinetics of the electronic center annealing in Al2O3 crystals

2018

Authors are greatly indebted to A. Ch. Lushchik, V. Kortov, M. Izerrouken and R.Vila for stimulating discussions. This work has been carried out within the framework of the Eurofusion Consortium and has received funding from the Euroatom research and training programme 2014–2018 under grant agreement No 633053 . The views and opinions expressed herein do not necessarily reflect those of the European Commission. The calculations were performed using facilities of the Stuttgart Supercomputer Center (project DEFTD 12939 ).

Nuclear and High Energy PhysicsMaterials scienceAnnealing (metallurgy)DimerKinetics02 engineering and technology01 natural sciencesMolecular physicsF centersRadiation defectsIonDiffusionchemistry.chemical_compound0103 physical sciencesAl2O3:NATURAL SCIENCES:Physics [Research Subject Categories]General Materials Science010306 general physicsNeutron irradiationAnnealing kineticsF2 centers021001 nanoscience & nanotechnologyRecombinationNuclear Energy and Engineeringchemistry0210 nano-technologyRecombination
researchProduct

Investigation of corrosion defects in titanium by positron annihilation

2015

Abstract The positron annihilation method was used to study the formation of defects in titanium samples during their corrosion in the vapor of a 3% HCl solution. In particular, the distribution of defects depending on the distance from the corroding surface and the impact of an external magnetic field on the concentration of vacancies forming during the corrosion of titanium layers close to the surface were determined.

Nuclear and High Energy PhysicsMaterials scienceMetallurgychemistry.chemical_elementpositron annihilation spectroscopyCondensed Matter Physicscorrosion defectsCorrosionPositron annihilation spectroscopyCondensed Matter::Materials ScienceNuclear Energy and EngineeringchemistryPhysics::Atomic and Molecular Clusterslcsh:QPhysics::Chemical PhysicsSafety Risk Reliability and Qualitylcsh:ScienceWaste Management and DisposalInstrumentationTitaniumPositron annihilationNukleonika
researchProduct

Hybrid density functional calculations of hyperfine coupling tensor for hole-type defects in MgAl2O4

2020

This work has been performed within the framework of the EUROfusion Enabling Research project: ENR-MFE19.ISSP-UL-02 “Advanced experimental and theoretical analysis of defect evolution and structural disordering in optical and dielectric materials for fusion application”. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Nuclear and High Energy PhysicsMaterials scienceMgAl2O4 (spinel)02 engineering and technologyType (model theory)engineering.material010402 general chemistry01 natural sciencesMolecular physicsResonance (particle physics)Spectral linelaw.inventionParamagnetismlaw:NATURAL SCIENCES:Physics [Research Subject Categories]TensorElectron paramagnetic resonanceInstrumentationHole-type defects (V-centres)Relaxation (NMR)Spinel021001 nanoscience & nanotechnology3. Good health0104 chemical sciencesHybrid DFT calculations (B3LYP)engineering0210 nano-technologyNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Steady-State X-Ray Radiation-Induced Attenuation in Canonical Optical Fibers

2020

The so-called canonical optical fibers (OFs) are samples especially designed to highlight the impact of some manufacturing process parameters on the radiation responses. Thanks to the results obtained on these samples, it is thus possible to define new procedures to better control the behaviors of OFs in radiation environments. In this article, we characterized the responses, under steady-state X-rays, of canonical samples representative of the most common fiber types differing by their core-dopants: pure silica, Ge, Al, and P. Their radiation-induced attenuation (RIA) spectra were measured online at both room temperature (RT) and liquid nitrogen temperature (LNT), in the energy range [~0.6…

Nuclear and High Energy PhysicsOptical fiberMaterials scienceDoped optical fibers)Analytical chemistryRadiation01 natural sciencesSpectral linelaw.inventionlaw0103 physical sciencespoint defectsFiberIrradiationElectrical and Electronic EngineeringAbsorption (electromagnetic radiation)ComputingMilieux_MISCELLANEOUSpure silica core[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]010308 nuclear & particles physicsAttenuationSettore FIS/01 - Fisica SperimentaleX-rayAttenuationNuclear Energy and Engineeringradiation effects
researchProduct

Radiation effects on silica-based preforms and optical fibers-I: Experimental study with canonical samples

2008

International audience; Prototype samples of preforms and associated fibers have been designed and fabricated through MCVD process to investigate the role of fluorine (F) and germanium (Ge) doping elements on the radiation sensitivity of silica-based glasses. We characterized the behaviors of these canonical samples before, during and after 10 keV X-ray irradiation through several spectroscopic techniques, to obtain global information (in situ absorption measurements, electron paramagnetic resonance) or spatially-resolved information (confocal microscopy, absorption and luminescence on preform). These tests showed that, for the Ge-doped fiber and in the 300–900 nm range, the radiation-induc…

Nuclear and High Energy PhysicsOptical fiberMaterials scienceoptical fibersAnalytical chemistrychemistry.chemical_elementGermanium02 engineering and technologyconfocal microscopy01 natural sciencesSpectral linelaw.inventionAbsorptionX-rays.law0103 physical sciencesX-raysluminescencepoint defectsIrradiationFiberElectrical and Electronic EngineeringAbsorption (electromagnetic radiation)010302 applied physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]021001 nanoscience & nanotechnologyCrystallographic defectOptical fiber photosensitivity absorption luminescenceNuclear Energy and EngineeringchemistryEPR0210 nano-technologyLuminescence
researchProduct

Transient and Steady-State Radiation Response of Phosphosilicate Optical Fibers: Influence of H2 Loading

2019

The radiation response of a phosphorus-doped multimode optical fiber is investigated under both transient (pulsed X-rays) and steady-state ( $\gamma $ - and X-rays) irradiations. The influence of a H2 preloading on the fiber radiation-induced attenuation (RIA) in the 300–2000-nm wavelength range has been characterized. To better understand the impact of this treatment, online behaviors of fiber samples containing different amounts of gas are compared from glass saturation (100%) to less than 1%. In addition to these in situ experiments, additional postirradiation spectroscopic techniques have been performed such as electron paramagnetic resonance or luminescence measurements to identify the…

Nuclear and High Energy PhysicsOptical fiberMaterials scienceoptical fibersHydrogenAnalytical chemistrychemistry.chemical_element01 natural scienceslaw.invention[SPI]Engineering Sciences [physics]law0103 physical sciencesX-rayspoint defectsElectrical and Electronic Engineeringphosphoruspulsed X-raysSaturation (magnetic)ComputingMilieux_MISCELLANEOUS[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Multi-mode optical fiber010308 nuclear & particles physicsAttenuationtemperatureLiquid nitrogenCrystallographic defectNuclear Energy and Engineeringchemistryradiation effectsH2 loadingLuminescence
researchProduct

Paramagnetic germanium-related centers induced by energetic radiation in optical fibers and preforms

2009

International audience; We investigated the creation processes of Ge-related paramagnetic point defects in silica fibers and preforms, doped with different amounts of germanium, and X-ray irradiated at several radiation doses. Different paramagnetic defect species, like GeE0, Ge(1) and Ge(2), were revealed by electron paramagnetic resonance measurements and their concentration was studied as a function of the irradiation dose. The comparison with the optical absorption spectra points out the main role of Ge(1) on the optical transmission loss of fibers in the UV region.

Optical fiberAbsorption spectroscopyAnalytical chemistryOptical spectroscopychemistry.chemical_elementGermaniumPACS: 42.81.-I 61.72.uf 61.80.Cb 76.30.Mi 78.40.Pglaw.inventionAbsorptionParamagnetismlawElectron spin resonanceMaterials ChemistryOptical fibersIrradiationElectron paramagnetic resonance[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]ResonanceSilicaSilica optical fiber defects Geermanium dopingCondensed Matter PhysicsCrystallographic defectElectronic Optical and Magnetic MaterialschemistryCeramics and CompositesDefects
researchProduct

An original method to compute epipoles using variable homography: application to measure emergent fibers on textile fabrics

2012

International audience; Fabric's smoothness is a key factor to determine the quality of finished textile products and has great influence on the functionality of industrial textiles and high-end textile products. With popularization of the 'zero defect' industrial concept, identifying and measuring defective material in the early stage of production is of great interest for the industry. In the current market, many systems are able to achieve automatic monitoring and control of fabric, paper, and nonwoven material during the entire production process, however online measurement of hairiness is still an open topic and highly desirable for industrial applications1. In this paper we propose a …

Optical fiberComputer scienceEpipolar geometry02 engineering and technologylaw.invention[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processinglaw0202 electrical engineering electronic engineering information engineeringCalibrationComputer visionfabric defects/fiberElectrical and Electronic EngineeringSimulationMeasure (data warehouse)Smoothnessbusiness.industryFiber (mathematics)020208 electrical & electronic engineeringVariable homographyAtomic and Molecular Physics and OpticsComputer Science ApplicationsVariable (computer science)3D elevation measurement8. Economic growthepipolar geometry020201 artificial intelligence & image processingArtificial intelligencebusiness[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingHomography (computer vision)
researchProduct