Search results for " Defects"
showing 10 items of 294 documents
Controlling the molecular diffusion in MOFs with the acidity of monocarboxylate modulators.
2021
The catalytic performance of metal-organic frameworks (MOFs) is related to their physicochemical properties, such as particle size, defect-chemistry and porosity, which synthetic control can be potentially achieved by coordination modulation. By combining PXRD, 1HNMR, FT-IR, N2 uptake measurements we have found insights that the different types of defects (missing linker or missing clusters consequence of the spatial distribution of missing linkers, and the combination of both) could be controlled by the type of modulator employed. We show that the molar percent of defects, either as missing linkers or as part of missing cluster defects, is related to the modulator’s acidity and subse…
Investigating the effect of residual stress on hydrogen cracking in multi-pass robotic welding through process compatible non-destructive testing
2021
Abstract In this paper, the effect of Welding Residual Stress (WRS) on the size and morphology of hydrogen-induced cracks (HIC) is studied. Four samples were manufactured using a 6-axis welding robot and in two separate batches. The difference between the two batches was the clamping system used, which resulted in different amounts of welding deformation and WRS. The hydrogen cracks were intentionally manufactured in the samples using a localised water-quenching method, where water was sprayed over a specific weld pass in a predetermined position. The Phased-Array Ultrasonic Testing (PAUT) system was implemented during the welding process (high-temperature in-process method), to detect the …
Kinetics of the electronic center annealing in Al2O3 crystals
2018
Authors are greatly indebted to A. Ch. Lushchik, V. Kortov, M. Izerrouken and R.Vila for stimulating discussions. This work has been carried out within the framework of the Eurofusion Consortium and has received funding from the Euroatom research and training programme 2014–2018 under grant agreement No 633053 . The views and opinions expressed herein do not necessarily reflect those of the European Commission. The calculations were performed using facilities of the Stuttgart Supercomputer Center (project DEFTD 12939 ).
Investigation of corrosion defects in titanium by positron annihilation
2015
Abstract The positron annihilation method was used to study the formation of defects in titanium samples during their corrosion in the vapor of a 3% HCl solution. In particular, the distribution of defects depending on the distance from the corroding surface and the impact of an external magnetic field on the concentration of vacancies forming during the corrosion of titanium layers close to the surface were determined.
Hybrid density functional calculations of hyperfine coupling tensor for hole-type defects in MgAl2O4
2020
This work has been performed within the framework of the EUROfusion Enabling Research project: ENR-MFE19.ISSP-UL-02 “Advanced experimental and theoretical analysis of defect evolution and structural disordering in optical and dielectric materials for fusion application”. The views and opinions expressed herein do not necessarily reflect those of the European Commission.
Steady-State X-Ray Radiation-Induced Attenuation in Canonical Optical Fibers
2020
The so-called canonical optical fibers (OFs) are samples especially designed to highlight the impact of some manufacturing process parameters on the radiation responses. Thanks to the results obtained on these samples, it is thus possible to define new procedures to better control the behaviors of OFs in radiation environments. In this article, we characterized the responses, under steady-state X-rays, of canonical samples representative of the most common fiber types differing by their core-dopants: pure silica, Ge, Al, and P. Their radiation-induced attenuation (RIA) spectra were measured online at both room temperature (RT) and liquid nitrogen temperature (LNT), in the energy range [~0.6…
Radiation effects on silica-based preforms and optical fibers-I: Experimental study with canonical samples
2008
International audience; Prototype samples of preforms and associated fibers have been designed and fabricated through MCVD process to investigate the role of fluorine (F) and germanium (Ge) doping elements on the radiation sensitivity of silica-based glasses. We characterized the behaviors of these canonical samples before, during and after 10 keV X-ray irradiation through several spectroscopic techniques, to obtain global information (in situ absorption measurements, electron paramagnetic resonance) or spatially-resolved information (confocal microscopy, absorption and luminescence on preform). These tests showed that, for the Ge-doped fiber and in the 300–900 nm range, the radiation-induc…
Transient and Steady-State Radiation Response of Phosphosilicate Optical Fibers: Influence of H2 Loading
2019
The radiation response of a phosphorus-doped multimode optical fiber is investigated under both transient (pulsed X-rays) and steady-state ( $\gamma $ - and X-rays) irradiations. The influence of a H2 preloading on the fiber radiation-induced attenuation (RIA) in the 300–2000-nm wavelength range has been characterized. To better understand the impact of this treatment, online behaviors of fiber samples containing different amounts of gas are compared from glass saturation (100%) to less than 1%. In addition to these in situ experiments, additional postirradiation spectroscopic techniques have been performed such as electron paramagnetic resonance or luminescence measurements to identify the…
Paramagnetic germanium-related centers induced by energetic radiation in optical fibers and preforms
2009
International audience; We investigated the creation processes of Ge-related paramagnetic point defects in silica fibers and preforms, doped with different amounts of germanium, and X-ray irradiated at several radiation doses. Different paramagnetic defect species, like GeE0, Ge(1) and Ge(2), were revealed by electron paramagnetic resonance measurements and their concentration was studied as a function of the irradiation dose. The comparison with the optical absorption spectra points out the main role of Ge(1) on the optical transmission loss of fibers in the UV region.
An original method to compute epipoles using variable homography: application to measure emergent fibers on textile fabrics
2012
International audience; Fabric's smoothness is a key factor to determine the quality of finished textile products and has great influence on the functionality of industrial textiles and high-end textile products. With popularization of the 'zero defect' industrial concept, identifying and measuring defective material in the early stage of production is of great interest for the industry. In the current market, many systems are able to achieve automatic monitoring and control of fabric, paper, and nonwoven material during the entire production process, however online measurement of hairiness is still an open topic and highly desirable for industrial applications1. In this paper we propose a …