Search results for " Dynamics"

showing 10 items of 4108 documents

The effects of pressure on the energy landscape of proteins

2018

AbstractProtein dynamics is characterized by fluctuations among different conformational substates, i.e. the different minima of their energy landscape. At temperatures above ~200 K, these fluctuations lead to a steep increase in the thermal dependence of all dynamical properties, phenomenon known as Protein Dynamical Transition. In spite of the intense studies, little is known about the effects of pressure on these processes, investigated mostly near room temperature. We studied by neutron scattering the dynamics of myoglobin in a wide temperature and pressure range. Our results show that high pressure reduces protein motions, but does not affect the onset temperature for the Protein Dynam…

0301 basic medicineMaterials science[PHYS.PHYS.PHYS-BIO-PH]Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph]lcsh:MedicineProtein dynamicsNeutron scatteringMolecular Dynamics Simulation01 natural sciencesArticleBiomaterials03 medical and health sciencesMolecular dynamicschemistry.chemical_compoundProtein Domains0103 physical sciencesThermalPressureAnimalsElastic neutron scatteringHorses010306 general physicslcsh:ScienceComputingMilieux_MISCELLANEOUSRange (particle radiation)Quantitative Biology::BiomoleculesMultidisciplinaryMyoglobinProtein dynamicslcsh:RTemperatureEnergy landscape030104 developmental biologyTemperature and pressureMyoglobinchemistrySoft MatterChemical physicsThermodynamicslcsh:QMolecular BiophysicsScientific Reports
researchProduct

Identification of New Antimicrobial Peptides from Mediterranean Medical Plant Charybdis pancration (Steinh.) Speta

2020

The present work was designed to identify and characterize novel antimicrobial peptides (AMPs) from Charybdis pancration (Steinh.) Speta, previously named Urginea maritima, is a Mediterranean plant, well-known for its biological properties in traditional medicine. Polypeptide-enriched extracts from different parts of the plant (roots, leaves and bulb), never studied before, were tested against two relevant pathogens, Staphylococcus aureus and Pseudomonas aeruginosa. With the aim of identifying novel natural AMPs, peptide fraction displaying antimicrobial activity (the bulb) that showed minimum inhibitory concentration (MICs) equal to 30 &micro

0301 basic medicineMicrobiology (medical)Charybdis030106 microbiologyAntimicrobial peptides) SpetaSettore BIO/05 - ZoologiatemporinPeptidemedicine.disease_causeSettore BIO/19 - Microbiologia GeneraleBiochemistryMicrobiologyMicrobiologyantibiotic resistant strains03 medical and health sciencesMinimum inhibitory concentrationAntibiotic resistancemedicinePharmacology (medical)high-resolution mass spectrometryGeneral Pharmacology Toxicology and Pharmaceuticsplant defensinschemistry.chemical_classificationbiologyPseudomonas aeruginosaantimicrobial peptides from plantCharybdis pancration (Steinh.) SpetaSettore BIO/02 - Botanica Sistematicalcsh:RM1-950temporinsbiology.organism_classificationAntimicrobialplant defensinmolecular dynamicslcsh:Therapeutics. Pharmacology030104 developmental biologyInfectious DiseaseschemistryStaphylococcus aureusCharybdis pancration (Steinhantimicrobial peptides from plants<i>Charybdis pancration</i> (Steinh.) Spetaantibiotic resistant strainAntibiotics
researchProduct

Development of an in vitro system to study oral biofilms in real time through impedance technology: validation and potential applications

2019

ABSTRACT Background and objectives: We have developed a standardized, easy-to-use in vitro model to study single- and multiple-species oral biofilms in real time through impedance technology, which elucidates the kinetics of biofilm formation in 96-well plates, without the requirement for any further manipulation. Design and Results: Using this system, biofilms of Streptococcus mutans appear to be sugar-dependent and highly resistant to amoxicilin, an antibiotic to which this oral pathogen is highly sensitive in a planktonic state. Saliva, tongue and dental plaque samples were also used as inocula to form multiple-species biofilms. DNA isolation and Illumina sequencing of the biofilms showe…

0301 basic medicineMicrobiology (medical)Fastidious organismSalivamultiple-species biofilmdental plaquemedicine.drug_classMicroorganismAntibioticslcsh:QR1-502real-timeDental plaquebiofilm dynamicslcsh:Microbiologylcsh:Infectious and parasitic diseasesMicrobiologyStreptococcus mutans03 medical and health sciences0302 clinical medicinetongueantibioticmedicinelcsh:RC109-216Dentistry (miscellaneous)PathogenbiologyOral biofilmsChemistryoral biofilmsBiofilm030206 dentistrybiochemical phenomena metabolism and nutritionmedicine.diseasebiology.organism_classificationStreptococcus mutansstreptococcus mutans030104 developmental biologyInfectious Diseasesin vitro modelimpedanceOriginal ArticleJournal of Oral Microbiology
researchProduct

A Crucial Role of Mitochondrial Dynamics in Dehydration Resistance in Saccharomyces cerevisiae

2021

Mitochondria are dynamic organelles as they continuously undergo fission and fusion. These dynamic processes conduct not only mitochondrial network morphology but also activity regulation and quality control. Saccharomyces cerevisiae has a remarkable capacity to resist stress from dehydration/rehydration. Although mitochondria are noted for their role in desiccation tolerance, the mechanisms underlying these processes remains obscure. Here, we report that yeast cells that went through stationary growth phase have a better survival rate after dehydration/rehydration. Dynamic defective yeast cells with reduced mitochondrial genome cannot maintain the mitochondrial activity and survival rate o…

0301 basic medicineMitochondrial DNASaccharomyces cerevisiae ProteinsQH301-705.5030106 microbiologySaccharomyces cerevisiaeSaccharomyces cerevisiaeMitochondrionyeastMitochondrial DynamicsCatalysisArticleInorganic ChemistryDesiccation tolerance03 medical and health sciencesmedicineDehydrationPhysical and Theoretical ChemistryBiology (General)DesiccationMolecular BiologyQD1-999SpectroscopyMicrobial ViabilitybiologyDehydrationChemistryOrganic ChemistryCell CycleWild typeGeneral Medicinedynamicsmedicine.diseasebiology.organism_classificationYeastComputer Science ApplicationsCell biologyMitochondriaChemistry030104 developmental biologymitochondrial fusionGenome MitochondrialInternational Journal of Molecular Sciences
researchProduct

An Integrated Pharmacophore/Docking/3D-QSAR Approach to Screening a Large Library of Products in Search of Future Botulinum Neurotoxin A Inhibitors

2020

Botulinum toxins are neurotoxins produced by Clostridium botulinum. This toxin can be lethal for humans as a cause of botulism

0301 basic medicineModels MolecularBotulinum ToxinsDatabases FactualNeuromuscular transmissionQuantitative Structure-Activity RelationshipPharmacologymedicine.disease_cause01 natural sciencesType Alcsh:ChemistryModelsClostridium botulinumbotulinum neurotoxin ABotulismBotulinum Toxins Type Alcsh:QH301-705.5Spectroscopyfood and beveragesGeneral MedicineBotulinum neurotoxinComputer Science ApplicationsdockingPharmacophoreQuantitative structure–activity relationshipStatic ElectricityChemicalbotulinum neurotoxin A virtual screening docking 3D-QSAR molecular dynamicsMolecular Dynamics SimulationArticleCatalysisInorganic ChemistrySmall Molecule Libraries03 medical and health sciencesDatabasesmedicinePhysical and Theoretical ChemistryMolecular BiologyFactual3D-QSARVirtual screening010405 organic chemistrybusiness.industryfungiOrganic ChemistryMolecularHydrogen Bondingmedicine.diseasevirtual screeningmolecular dynamics0104 chemical sciences030104 developmental biologyModels Chemicallcsh:Biology (General)lcsh:QD1-999Docking (molecular)Clostridium botulinumbusinessInternational Journal of Molecular Sciences
researchProduct

Two differential binding mechanisms of FG-nucleoporins and nuclear transport receptors

2018

Summary Phenylalanine-glycine-rich nucleoporins (FG-Nups) are intrinsically disordered proteins, constituting the selective barrier of the nuclear pore complex (NPC). Previous studies showed that nuclear transport receptors (NTRs) were found to interact with FG-Nups by forming an “archetypal-fuzzy” complex through the rapid formation and breakage of interactions with many individual FG motifs. Here, we use single-molecule studies combined with atomistic simulations to show that, in sharp contrast, FG-Nup214 undergoes a coupled reconfiguration-binding mechanism when interacting with the export receptor CRM1. Association and dissociation rate constants are more than an order of magnitude lowe…

0301 basic medicineModels MolecularGlycosylationglycosylationProtein ConformationPhenylalanineGlycineSequence (biology)Intrinsically disordered proteinsnuclear transport receptorssingle-molecule FRETGeneral Biochemistry Genetics and Molecular BiologyArticle03 medical and health scienceschemistry.chemical_compound0302 clinical medicineEscherichia coliFluorescence Resonance Energy TransferHumansNuclear poreReceptorlcsh:QH301-705.5Single-molecule FRETmolecular dynamics simulationsbinding mechanismintrinsically disordered proteinFG-Nup3. Good healthNuclear Pore Complex Proteins030104 developmental biologychemistrylcsh:Biology (General)BiophysicsNuclear PoreNucleoporinNuclear transport030217 neurology & neurosurgeryProtein BindingCell Reports
researchProduct

Identification of estrogen receptor α ligands with virtual screening techniques.

2016

Utilization of computer-aided molecular discovery methods in virtual screening (VS) is a cost-effective approach to identify novel bioactive small molecules. Unfortunately, no universal VS strategy can guarantee high hit rates for all biological targets, but each target requires distinct, fine-tuned solutions. Here, we have studied in retrospective manner the effectiveness and usefulness of common pharmacophore hypothesis, molecular docking and negative image-based screening as potential VS tools for a widely applied drug discovery target, estrogen receptor α (ERα). The comparison of the methods helps to demonstrate the differences in their ability to identify active molecules. For example,…

0301 basic medicineModels MolecularQuantitative structure–activity relationshipMolecular ConformationQuantitative Structure-Activity RelationshipComputational biologyMolecular Dynamics Simulationta3111BioinformaticsLigands01 natural sciencesMolecular Docking SimulationSmall Molecule Libraries03 medical and health sciencesestrogen receptor alphaDrug DiscoveryMaterials ChemistryHumansComputer SimulationPhysical and Theoretical ChemistrySpectroscopy3D-QSARVirtual screeningDrug discoveryChemistryta1182Estrogen Receptor alphaSmall Molecule LibrariesReproducibility of Resultsmolecular dockingvirtual screeningComputer Graphics and Computer-Aided DesignSmall molecule0104 chemical sciencesMolecular Docking Simulation010404 medicinal & biomolecular chemistry030104 developmental biologyArea Under Curvepharmacophore modelingligand discoverynegative imagePharmacophoreEstrogen receptor alphaJournal of molecular graphicsmodelling
researchProduct

Kinetic evidence for interaction of TMPyP4 with two different G-quadruplex conformations of human telomeric DNA

2018

Background: Stabilization of G-quadruplex helices by small ligands has attracted growing attention because they inhibit the activity of the enzyme telomerase, which is overexpressed in> 80% cancer cells. TMPyP4, one of the most studied G-quadruplex ligands, is used as a model to show that the ligands can exhibit different binding features with different conformations of a human telomeric specific sequence. Methods: UV–Vis, FRET melting Assay, Isothermal Titration Calorimetry, Time-resolved Fluorescence lifetime, T-Jump and Molecular Dynamics. Results: TMPyP4 yields two different complexes with two Tel22 telomeric conformations in the presence of Na+ or K+. T-Jump kinetic experiments show th…

0301 basic medicineModels MolecularReaction mechanismMolecular dynamicPorphyrinsFast reactionsBiophysicsStackingTel22 conformationsMolecular dynamicsBuffersCalorimetryMolecular Dynamics SimulationG-quadruplexLigandsNucleic Acid DenaturationBiochemistryDissociation (chemistry)Chemistry Physical and theoretical03 medical and health sciencesMolecular dynamicsQuímica físicaFluorescence Resonance Energy TransferHumansFast reactionMolecular BiologyTMPyP4ChemistryTel22 conformationIsothermal titration calorimetryTelomereSmall moleculeG-QuadruplexesCrystallographyKinetics030104 developmental biologyFörster resonance energy transferOligodeoxyribonucleotidesBiophysicSettore CHIM/03 - Chimica Generale E InorganicaPotassiumNucleic Acid ConformationThermodynamicsSpectrophotometry Ultraviolet
researchProduct

The substitution rate of HIV-1 subtypes: a genomic approach

2017

Abstract HIV-1M causes most infections in the AIDS pandemic. Its genetic diversity is defined by nine pure subtypes and more than sixty recombinant forms. We have performed a comparative analysis of the evolutionary rate of five pure subtypes (A1, B, C, D, and G) and two circulating recombinant forms (CRF01_AE and CRF02 AG) using data obtained from nearly complete genome coding sequences. Times to the most recent common ancestor (tMRCA) and substitution rates of these HIV genomes, and their genomic partitions, were estimated by Bayesian coalescent analyses. Genomic substitution rate estimates were compared between the HIV-1 datasets analyzed by means of randomization tests. Significant diff…

0301 basic medicineMost recent common ancestor030106 microbiologyBiologyrelaxed molecular clockMicrobiologyGenomeCoalescent theory03 medical and health sciencesBayesian skyline plotVirologyMolecular clockEvolutionary dynamicsGeneGeneticsGenetic diversityBEASTvirus diseasessubstitution rateVirusGenòmica030104 developmental biologyHIV-1Rate of evolutiontMRCAResearch ArticleVirus Evolution
researchProduct

Evaluation of permeability applicability based on continuum mechanics law in fluid flow through graphene membrane

2019

AbstractGraphene is expected to be used in separation applications such as desalination. However, it is difficult to predict the flow phenomena at the nanoscale using the conventional continuum law. Particularly at a Knudsen number (Kn) of &gt;0.1, which is applied in filtration, it has been reported that not even slip boundary conditions can be applied. In this study, to identify the parameters that affect the applicability of the continuum law, we conducted a fluid permeation simulation using graphene. The deviation of the permeability from that of the continuum model was calculated by changing the channel width, fluid temperature, and fluid type. The result showed that the channel width …

0301 basic medicineNanoscale materialsMultidisciplinaryMaterials scienceContinuum mechanicsContinuum (measurement)lcsh:Rlcsh:MedicineSlip (materials science)PermeationArticleMechanical engineering03 medical and health sciencesPermeability (earth sciences)030104 developmental biology0302 clinical medicineLawFluid dynamicslcsh:QKnudsen numberBoundary value problemGraphenelcsh:Science030217 neurology & neurosurgeryScientific Reports
researchProduct