Search results for " ELECTRODEPOSITION"

showing 10 items of 65 documents

Ag11(SG)7 : A New Cluster Identified by Mass Spectrometry and Optical Spectroscopy

2014

We report a one-step and high yield synthesis of a red-luminescent silver cluster with the molecular formula, Ag11(SG)7 (SG: glutathionate) via reduction of silver ions by sodium borohydride in the presence of the tripeptide, glutathione (GSH). The as-prepared cluster shows prominent absorption features at 485 and 625 nm in its UV-vis absorption spectrum. Aging of the as-prepared cluster solution led to the disappearance of the 625 nm peak, followed by broadening of the 485 nm peak to give three maxima at ?487, 437, and 393 nm in its absorption spectrum. These peaks remain unchanged even after polyacrylamide gel electrophoresis (PAGE), where a single band was observed confirming high purity…

Absorption spectroscopyta114Electrospray ionizationAnalytical chemistryMass spectrometryAbsorption spectra; Density functional theory; Electrodeposition; Electromagnetic wave absorption; Electrophoresis; Electrospray ionization; Isotopes; Light absorption; Mass spectrometry; Metal ions; Potable water; Spectrometry; Ultraviolet spectroscopy; Absorption features; Electrospray ionization mass spectrometry; High yield synthesis; Molecular formula; Optical spectroscopy; Polyacrylamide gel electrophoresis; Sodium boro hydrides; UV-VIS absorption spectra; Absorption spectroscopySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsIonSodium borohydridechemistry.chemical_compoundGeneral EnergyUltraviolet visible spectroscopychemistryPhysical and Theoretical ChemistryAbsorption (electromagnetic radiation)Spectroscopyta116Journal of Physical Chemistry C
researchProduct

Effects of ultrasound and temperature on copper electro reduction in Deep Eutectic Solvents (DES).

2014

Abstract This paper concerns a preliminary study for a new copper recovery process from ionic solvent. The aim of this work is to study the reduction of copper in Deep Eutectic Solvent (choline chloride–ethylene glycol) and to compare the influence of temperature and the ultrasound effects on kinetic parameters. Solutions were prepared by dissolution of chloride copper salt CuCl 2 (to obtain Copper in oxidation degree II) or CuCl (to obtain Copper in oxidation degree I) and by leaching metallic copper directly in DES. The spectrophotometry UV–visible analysis of the leached solution showed that the copper soluble form obtained is at oxidation degree I (Copper I). Both cyclic voltammetry and…

Acoustics and UltrasonicsCopper electrodepositionDeep Eutectic SolventOrganic ChemistryInorganic chemistrychemistry.chemical_elementElectrochemistryCopperDeep eutectic solventInorganic ChemistryPower ultrasoundchemistry.chemical_compoundchemistryMass transferElectrochemistryChemical Engineering (miscellaneous)Environmental Chemistry[CHIM]Chemical SciencesRadiology Nuclear Medicine and imagingCyclic voltammetryVoltammetryDissolutionEutectic systemUltrasonics sonochemistry
researchProduct

Ruthenium Oxide Nanotubes Via Template Electrosynthesis

2011

Ruthenium oxide nanotubes were fabricated by a single-step galvanostatic deposition using porous anodic alumina membrane as template. For the electrodeposition process, we used a electrochemical cell specifically designed in order to employ only 0.5 ml of 0.02 M RuCl3•xH2O solution. The deposition from a very small volume was specifically addressed owing to the high cost of ruthenium compounds, which could be of some relevance from an applicative point of view. Several techniques were used to characterize the samples prior to and after thermal treatment, which was carried out at different temperatures in order to study the crystallization process of the deposit. Raman spectroscopy of as-dep…

Anodic alumina membrane electrodeposition metal oxide nanotubes raman spectroscopy ruthenium oxide supercapacitors template fabrication.Settore ING-IND/23 - Chimica Fisica ApplicataMaterials scienceBiomedical EngineeringPharmaceutical ScienceMedicine (miscellaneous)BioengineeringElectrosynthesisCombinatorial chemistryRuthenium oxideBiotechnologyCurrent Nanoscience
researchProduct

GROWTH AND PHOTOELECTROCHEMICAL BEHAVIOUR OF ELECTRODEPOSITED ZnO THIN FILMS FOR SOLAR CELLS

2012

Thin zinc oxide films were deposited potentiostatically from zinc nitrate aqueous solutions on ITO substrates. The influence of experimental parameters (temperature, electrolyte concentration, deposition potential) on structure and morphology of films was investigated. Deposited films were generally polycrystalline in structure, even if growth according to preferential planes occurs in certain conditions. The effect of thermal treatments in air at 150 and 350 °C was also studied. In some cases, Cl species were incorporated into deposit by adding zinc chloride to the electrolyte. A photoelectrochemical investigation, performed in neutral solution before and after thermal treatment, gives mor…

Aqueous solutionMaterials scienceAnnealing (metallurgy)General Chemical EngineeringInorganic chemistryOxidechemistry.chemical_elementElectrolyteThermal treatmentZincchemistry.chemical_compoundSettore ING-IND/23 - Chimica Fisica ApplicatachemistryZinc nitrateMaterials ChemistryElectrochemistryThin filmZnO CIGS Solar Cells Electrodeposition TCO
researchProduct

Template electrodeposition and characterization of nanostructured Pb as a negative electrode for lead-acid battery

2019

Abstract Despite Lead Acid Battery (LAB) is the oldest electrochemical energy storage system, diffusion in the emerging sectors of technological interest is inhibited by its drawbacks. The principal ones are low energy density and negative plate sulphating on high rate discharging. In this work, it is shown the possibility of overcoming such drawbacks by using nanostructured lead as a negative electrode. Lead nanowires (NWs) were fabricated by electrochemical deposition in template, which is an easy, cheap, and easily scalable process. Their morphology and crystal structure have been characterized by electron microscopy and X-ray diffraction, respectively. An electrochemical cell simulating…

Auxiliary electrodeMaterials scienceNanostructureHigh C-Rate cyclingCycling efficiencyRenewable Energy Sustainability and the EnvironmentNanowireLead-acid batteryEnergy Engineering and Power TechnologyNanotechnologyTemplate electrodepositionElectrochemistryElectrochemical cellSettore ING-IND/23 - Chimica Fisica ApplicataLead nanowireElectrodePhysical and Theoretical ChemistryElectrical and Electronic EngineeringLead–acid batteryPorositySeparator (electricity)
researchProduct

Electroplated Ni/Ni-Co multilayer coatings for higher corrosion-erosion resistance

2019

Erosion-corrosion behaviour of hierarchical structured hydrophobic nickel-cobalt coating, obtained by electrodeposition, was assessed. In situ electrochemical measurements were carried out to study the corrosion resistance and stability during erosion tests. The electrochemical behaviour was related to surface hydrophobicity and its hierarchical structure nature as well as its modification. The pure Ni showed the lowest erosion-corrosion resistance. A smoothing of the hierarchical structure and thus a reduction the hydrophobicity was highlighted. On the other hand, Ni-Co coating even if associated to a lower electrochemical stability showed a more stable hierarchical structure also at high …

CoatingSettore ING-IND/23 - Chimica Fisica ApplicataElectrodepositionErosion-corrosionHydrophobicityCoating; Electrodeposition; Erosion-corrosion; Hydrophobicity; RoughnessRoughness
researchProduct

Influence Of The Electrical Parameters On The Fabrication Of Copper Nanowires Into Anodic Alumina Templates

2009

Abstract Metallic copper nanowires have been grown into the pores of alumina membranes by electrodeposition from an aqueous solution containing CuSO 4 . and H 3 BO 3 at pH 3. In order to study the influence of the electrical parameters on growth and structure of nanowires, different deposition potentials (both in the region where hydrogen evolution reaction is allowed or not) and voltage perturbation modes (constant potential or unipolar pulsed depositions) were applied. In all cases, pure polycrystalline Cu nanowires were fabricated into template pores, having lengths increasing with the total deposition time. These nanowires were self-standing, because they retain their vertical orientati…

Copper nanowireMaterials scienceAnodic alumina membraneNanowireGeneral Physics and Astronomychemistry.chemical_elementNanotechnologySurfaces and InterfacesGeneral ChemistryCondensed Matter PhysicsCopperGrain sizeSurfaces Coatings and Filmschemistry.chemical_compoundSettore ING-IND/23 - Chimica Fisica ApplicataCopper nanowires; Anodic alumina membranes; Electrodeposition; Self-standing structureschemistryChemical engineeringElectrodepositionAluminium oxideCrystalliteVapor–liquid–solid methodSelf-standing structuresDissolutionDeposition (law)
researchProduct

Nickel-Indium Sulphide Core-Shell Nonostructures Obtained by Spray-ILGAR Deposition

2013

Ni nanowires (NWs) of different lengths were fabricated by pulsed potentiostatic deposition within pores of polycarbonate membranes. After template dissolution, substrates underwent sequential Spray-ILGAR® depositions of thin indium sulphide films. The effect of deposition temperature was also investigated. For low number of deposition cycles, results showed complete and uniform covering of metal over the entire length of NWs, with formation of Ni - In2S3 core-shell structures. However, with increasing number of deposition cycles films became uneven and crusty, especially at higher temperatures, owing to the simultaneous formation of nickel sulfide. This drawback was almost eliminated doubl…

Core-shell nanostructures electrodeposition solar cells nanowiresSettore ING-IND/23 - Chimica Fisica Applicata
researchProduct

CIGS THIN FILM BY ONE-STEP ELECTRODEPOSITION FOR SOLAR CELLS

2013

In this work, we present a cost-effective technique to produce CIGS thin films for solar cells by means of a single-step electrodeposition. In fact, electrodeposition is known as an easy technique for building low cost materials for photovoltaic device processing. Morphological, structural and optical characterization of these films has been performed.

Cu(InGa)Se2(CIGS)Settore ING-IND/23 - Chimica Fisica ApplicataOne-step electrodepositionCIGS solar cellThin-film solar cellSettore ING-INF/01 - Elettronica
researchProduct

Controlled solution-based fabrication of perovskite thin films directly on conductive substrate

2021

Abstract Organometallic perovskites are one of the most investigated materials for high-efficiency thin-film devices to convert solar energy and supply energy. In particular, methylammonium lead iodide has been used to realize thin-film perovskite solar cells, achieving an efficiency higher than 20%. Different fabrication procedures based on the spin-coating technique have been proposed, which do not ensure homogenous morphologies. In this work, we present a scalable process to fabricate methylammonium lead iodide thin films directly on conductive substrates, consisting of electrodeposition and two subsequent chemical conversions. A thorough investigation of the morphological, structural an…

FabricationMaterials scienceAbsorption spectroscopyChemical conversion Electrodeposition Organometallic perovskite Solar cell Thin filmIodide02 engineering and technologySubstrate (electronics)01 natural sciences0103 physical sciencesSettore ING-IND/17 - Impianti Industriali MeccaniciMaterials ChemistryThin filmAbsorption (electromagnetic radiation)Perovskite (structure)010302 applied physicschemistry.chemical_classificationbusiness.industrySettore FIS/01 - Fisica SperimentaleMetals and AlloysSurfaces and Interfaces021001 nanoscience & nanotechnologySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsSettore ING-IND/23 - Chimica Fisica ApplicatachemistryOptoelectronics0210 nano-technologybusinessLayer (electronics)
researchProduct