Search results for " ELECTRODEPOSITION"

showing 10 items of 65 documents

Method for Producing an Electrode with Nanometric Structure and Electrode with Nanometric Stucture

2012

Settore ING-IND/23 - Chimica Fisica ApplicataNANOSTRUCTURES LITHIUM ION BATTERY ELECTRODEPOSITION TEMPLATE SYNTHESIS
researchProduct

Thin Films of Semiconductors for Flexible Solar Cells: Electrochemical Deposition and Characterization

2011

Settore ING-IND/23 - Chimica Fisica ApplicataSOLAR CELLS ELECTRODEPOSITION SEMICONDUCTORS ZnS CIGS
researchProduct

Electrodeposition of CeO2 and Co-Doped CeO2 Nanotubes by Cyclic Anodization in Porous Alumina Membranes

2013

An anodic electrodeposition process is proposed to prepare CeO2 and Co-doped CeO2 nanotubes. Anodic alumina membrane is used as template and linear sweep voltammetry is employed to allow the formation of nanotubes without alumina dissolution. SEM micrographs showed large arrays of well defined and aligned NTs, which resulted to be crystalline soon after deposition according to XRD diffraction patterns and Raman Spectroscopy.

Fuel TechnologyMaterials scienceSettore ING-IND/23 - Chimica Fisica ApplicataChemical engineeringAnodizingAlumina membranesMaterials ChemistryElectrochemistrynanotubes Electrodeposition anodic alumina membranePorosityCo dopedAlumina dissolution Anodic alumina membranes Anodic electrodeposition Anodizations Large arrays Linear sweep voltammetry Porous alumina membranes SEM micrographs
researchProduct

Influence Of The Electrical Parameters On The Fabrication Of Copper Nanowires Into Anodic Alumina Templates

2009

Abstract Metallic copper nanowires have been grown into the pores of alumina membranes by electrodeposition from an aqueous solution containing CuSO 4 . and H 3 BO 3 at pH 3. In order to study the influence of the electrical parameters on growth and structure of nanowires, different deposition potentials (both in the region where hydrogen evolution reaction is allowed or not) and voltage perturbation modes (constant potential or unipolar pulsed depositions) were applied. In all cases, pure polycrystalline Cu nanowires were fabricated into template pores, having lengths increasing with the total deposition time. These nanowires were self-standing, because they retain their vertical orientati…

Copper nanowireMaterials scienceAnodic alumina membraneNanowireGeneral Physics and Astronomychemistry.chemical_elementNanotechnologySurfaces and InterfacesGeneral ChemistryCondensed Matter PhysicsCopperGrain sizeSurfaces Coatings and Filmschemistry.chemical_compoundSettore ING-IND/23 - Chimica Fisica ApplicataCopper nanowires; Anodic alumina membranes; Electrodeposition; Self-standing structureschemistryChemical engineeringElectrodepositionAluminium oxideCrystalliteVapor–liquid–solid methodSelf-standing structuresDissolutionDeposition (law)
researchProduct

Electrochemical Synthesis of Zinc Oxide Nanostructures on Flexible Substrate and Application as an Electrochemical Immunoglobulin-G Immunosensor

2022

Immunoglobulin G (IgG), a type of antibody, represents approximately 75% of serum antibodies in humans, and is the most common type of antibody found in blood circulation. Consequently, the development of simple, fast and reliable systems for IgG detection, which can be achieved using electrochemical sandwich-type immunosensors, is of considerable interest. In this study we have developed an immunosensor for human (H)-IgG using an inexpensive and very simple fabrication method based on ZnO nanorods (NRs) obtained through the electrodeposition of ZnO. The ZnO NRs were treated by electrodepositing a layer of reduced graphene oxide (rGO) to ensure an easy immobilization of the antibodies. On I…

TechnologyMicroscopyQC120-168.85nanotechnologyimmunoglobulin-GTQH201-278.5immunosensorszinc oxideEngineering (General). Civil engineering (General)nanorodTK1-9971Settore ING-IND/23 - Chimica Fisica ApplicataDescriptive and experimental mechanicsSettore ING-IND/17 - Impianti Industriali MeccanicielectrodepositionElectrochemical sensorszinc oxide; nanorod; immunosensors; electrodeposition; immunoglobulin-G; nanostructured materials; electrochemical sensorsnanostructured materialsGeneral Materials ScienceElectrical engineering. Electronics. Nuclear engineeringTA1-2040
researchProduct

Fabrication and Characterization of Different Nanostructures

2007

Settore ING-IND/23 - Chimica Fisica ApplicataNanostructures Nanowires Nanotubes Electrodeposition Template Electrosynthesis Anodic Alumina Membranes
researchProduct

Fabrication and Photoelectrochemical Behavior of Ordered CIGS Nanowire Arrays for Application in Solar Cells

2010

In this work, we report some preliminary results concerning the fabrication of quaternary copper, indium, gallium, and selenium CIGS nanowires that were grown inside the channels of an anodic alumina membrane by one-step potentiostatic deposition at different applied potentials and room temperature. A tunable nanowire composition was achieved through a manipulation of the applied potential and electrolyte composition. X-ray diffraction analysis showed that nanowires, whose chemical composition was determined by energy-dispersive spectroscopy analysis, were amorphous. A composition of Cu0.203In0.153Ga0.131Se0.513, very close to the stoichiometric value, was obtained. These nanostructures wer…

FabricationMaterials scienceGeneral Chemical EngineeringNanowirechemistry.chemical_elementNanotechnologyCopper Indium Gallium Selenidechemistry.chemical_compoundCopper Indium Gallium Selenide; Solar Cells; Template Synthesis; Electrodeposition; Anodic Alumina MembranesElectrodepositionElectrochemistryGeneral Materials ScienceElectrical and Electronic EngineeringPhysical and Theoretical ChemistryGalliumAnodic Alumina MembranesPhotocurrentbusiness.industryCopper indium gallium selenide solar cellsAmorphous solidSettore ING-IND/23 - Chimica Fisica ApplicatachemistrySolar CellTemplate SynthesiOptoelectronicsbusinessCopper indium gallium selenideIndiumElectrochemical and Solid-State Letters
researchProduct

Ag11(SG)7 : A New Cluster Identified by Mass Spectrometry and Optical Spectroscopy

2014

We report a one-step and high yield synthesis of a red-luminescent silver cluster with the molecular formula, Ag11(SG)7 (SG: glutathionate) via reduction of silver ions by sodium borohydride in the presence of the tripeptide, glutathione (GSH). The as-prepared cluster shows prominent absorption features at 485 and 625 nm in its UV-vis absorption spectrum. Aging of the as-prepared cluster solution led to the disappearance of the 625 nm peak, followed by broadening of the 485 nm peak to give three maxima at ?487, 437, and 393 nm in its absorption spectrum. These peaks remain unchanged even after polyacrylamide gel electrophoresis (PAGE), where a single band was observed confirming high purity…

Absorption spectroscopyta114Electrospray ionizationAnalytical chemistryMass spectrometryAbsorption spectra; Density functional theory; Electrodeposition; Electromagnetic wave absorption; Electrophoresis; Electrospray ionization; Isotopes; Light absorption; Mass spectrometry; Metal ions; Potable water; Spectrometry; Ultraviolet spectroscopy; Absorption features; Electrospray ionization mass spectrometry; High yield synthesis; Molecular formula; Optical spectroscopy; Polyacrylamide gel electrophoresis; Sodium boro hydrides; UV-VIS absorption spectra; Absorption spectroscopySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsIonSodium borohydridechemistry.chemical_compoundGeneral EnergyUltraviolet visible spectroscopychemistryPhysical and Theoretical ChemistryAbsorption (electromagnetic radiation)Spectroscopyta116Journal of Physical Chemistry C
researchProduct

ULTRAFAST LEAD ACID BATTERIES USING NANOSTRUCTURED ELECTRODES

2012

Settore ING-IND/23 - Chimica Fisica ApplicataLead-acid Batteries Nanostructures Pb PbO2 Electrodeposition Batteries
researchProduct

Double Step Electrochemical Process for the Deposition of Superhydrophobic Coatings for Enhanced Corrosion Resistance

2021

Superhydrophobic surface on anodized AA5083 sample was obtained by an electrochemical process. Scanning Electron Microscopy and Fourier Transform Infrared Spectroscopy analyses revealed the hierarchical structure of the coating and the presence of manganese stearate. These features were crucial for the coating superhydrophobicity, demonstrated by a measured contact angle of ~ 163° and its self-cleaning ability. Electrochemical characterization in an aqueous solution mimicking seawater proved an enhanced corrosion resistance due to the superhydrophobic coating with respect to anodized AA5083 sample that also lasted after 20 immersion days in Cl- containing electrolyte.

Materials scienceRenewable Energy Sustainability and the EnvironmentAnodizingScanning electron microscopeengineering.materialCondensed Matter PhysicsSuperhydrophobic coatingSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCorrosionAA5083 Electrodeposition Marine corrosion Superhydrophobic Stearic acid Self-cleaningContact anglechemistry.chemical_compoundSettore ING-IND/23 - Chimica Fisica ApplicataCoatingchemistryChemical engineeringStearateMaterials ChemistryElectrochemistryengineeringFourier transform infrared spectroscopy
researchProduct