Search results for " FPGA."
showing 10 items of 36 documents
ConformalALU: A Conformal Geometric Algebra Coprocessor for Medical Image Processing
2015
Medical imaging involves important computational geometric problems, such as image segmentation and analysis, shape approximation, three-dimensional (3D) modeling, and registration of volumetric data. In the last few years, Conformal Geometric Algebra (CGA), based on five-dimensional (5D) Clifford Algebra, is emerging as a new paradigm that offers simple and universal operators for the representation and solution of complex geometric problems. However, the widespread use of CGA has been so far hindered by its high dimensionality and computational complexity. This paper proposes a simplified formulation of the conformal geometric operations (reflections, rotations, translations, and uniform …
A Sliced Coprocessor for Native Clifford Algebra Operations
2007
Computer graphics applications require efficient tools to model geometric objects. The traditional approach based on compute-intensive matrix calculations is error-prone due to a lack of integration between geometric reasoning and matrix-based algorithms. Clifford algebra offers a solution to these issues since it permits specification of geometry at a coordinate-free level. The best way to exploit the symbolic computing power of geometric (Clifford) algebra is supporting its data types and operators directly in hardware. This paper outlines the architecture of S-CliffoSor (Sliced Clifford coprocessor), a parallelizable embedded coprocessor that executes native Clifford algebra operations. …
Design and implementation of an embedded coprocessor with native support for 5D, quadruple-based Clifford algebra
2013
Geometric or Clifford algebra (CA) is a powerful mathematical tool that offers a natural and intuitive way to model geometric facts in a number of research fields, such as robotics, machine vision, and computer graphics. Operating in higher dimensional spaces, its practical use is hindered, however, by a significant computational cost, only partially addressed by dedicated software libraries and hardware/software codesigns. For low-dimensional algebras, several dedicated hardware accelerators and coprocessing architectures have been already proposed in the literature. This paper introduces the architecture of CliffordALU5, an embedded coprocessing core conceived for native execution of up t…
An embedded iris recognizer for portable and mobile devices
2010
Software-intensive systems play an increasingly dominant role in our lives and daily activities. Several applications, in which a timely response to user and environment stimulus is essential, require real-time software intensive systems. Computation-intensive applications, such as video compression, control systems, security systems, result in significant growth for processor workload. To address the above issues, one possible solution is to design embedded specialized components. At the same time, the integration of new features in portable and mobile devices is rapidly increasing. Several services and applications require robust user authentication for access to services, data, and resou…
A Family of Embedded Coprocessors with Native Geometric Algebra Support
2015
Clifford Algebra or Geometric Algebra (GA) is a simple and intuitive way to model geometric objects and their transformations. Operating in high-dimensional vector spaces with significant computational costs, the practical use of GA requires, however, dedicated software and/or hardware architectures to directly support Clifford data types and operators. In this paper, a family of embedded coprocessors for the native execution of GA operations is presented. The paper shows the evolution of the coprocessor family focusing on the latest two architectures that offer direct hardware support to up to five-dimensional Clifford operations. The proposed coprocessors exploit hardware-oriented represe…
An Embedded Processor for Metabolic Networks Optimization
2011
In recent years biological processes modelling and simulation have become two key issues in analyzing complex cellular systems. The computational requirements suggest to investigate alternative solutions to the common supercomputers and clusters in order to optimize and overcome computational bottleneck. The goal of this work is the design and the realization of an embedded processor for metabolic networks optimization in order to examine their behaviour and robustness under malfunctions of one or more nodes. The embedded processor has been prototyped on the Celoxica RC203E board, equipped with programmable FPGA technologies. A case studied outlining the E. Coli bacteria metabolic network i…
An Embedded, FPGA-based Computer Graphics Coprocessor with Native Geometric Algebra Support
2009
The representation of geometric objects and their transformation are the two key aspects in computer graphics applications. Traditionally, computer-intensive matrix calculations are involved in modeling and rendering three-dimensional (3D) scenery. Geometric algebra (aka Clifford algebra) is attracting attention as a natural way to model geometric facts and as a powerful analytical tool for symbolic calculations. In this paper, the architecture of Clifford coprocessor (CliffoSor) is introduced. CliffoSor is an embedded parallel coprocessing core that offers direct hardware support to Clifford algebra operators. A prototype implementation on a programmable gate array (FPGA) board is detailed…
A Dual-Core Coprocessor with Native 4D Clifford Algebra Support
2012
Geometric or Clifford Algebra (CA) is a powerful mathematical tool that is attracting a growing attention in many research fields such as computer graphics, computer vision, robotics and medical imaging for its natural and intuitive way to represent geometric objects and their transformations. This paper introduces the architecture of CliffordCoreDuo, an embedded dual-core coprocessor that offers direct hardware support to four-dimensional (4D) Clifford algebra operations. A prototype implementation on an FPGA board is detailed. Experimental results show a 1.6× average speedup of CliffordCoreDuo in comparison with the baseline mono-core architecture. A potential cycle speedup of about 40× o…
Fixed-size Quadruples for a New, Hardware-Oriented Representation of the 4D Clifford Algebra
2010
Clifford algebra (geometric algebra) offers a natural and intuitive way to model geometry in fields as robotics, machine vision and computer graphics. This paper proposes a new representation based on fixed-size elements (quadruples) of 4D Clifford algebra and demonstrates that this choice leads to an algorithmic simplification which in turn leads to a simpler and more compact hardware implementation of the algebraic operations. In order to prove the advantages of the new, quadruple-based representation over the classical representation based on homogeneous elements, a coprocessing core supporting the new fixed-size Clifford operands, namely Quad-CliffoSor (Quadruple-based Clifford coproces…
Design Space Exploration of Parallel Embedded Architectures for Native Clifford Algebra Operations
2012
In the past few decades, Geometric or Clifford algebra (CA) has received a growing attention in many research fields, such as robotics, machine vision and computer graphics, as a natural and intuitive way to model geometric objects and their transformations. At the same time, the high dimensionality of Clifford algebra and its computational complexity demand specialized hardware architectures for the direct support of Clifford data types and operators. This paper presents the design space exploration of parallel embedded architectures for native execution of four-dimensional (4D) and five-dimensional (5D) Clifford algebra operations. The design space exploration has been described along wit…