Search results for " Fluid dynamics"
showing 10 items of 246 documents
CFD simulations of dense solid–liquid suspensions in baffled stirred tanks: Prediction of solid particle distribution
2013
Abstract Industrial tanks devoted to the mixing of solid particles into liquids are often operated at an impeller speed N less than Njs (defined as the lowest speed allowing the suspension of all particles): under such conditions the distribution of solid-particles is very far from being homogeneous and very significant concentration gradients exist. The present work is devoted to assessing the capability of Computational Fluid Dynamics (CFD) in predicting the particle distribution throughout the tank. The CFD model proposed by Tamburini et al. [58] and successfully applied to the prediction of the sediment amount and shape was adopted here to simulate the particle distribution under partia…
Steady State and Dynamic Models of Multistage Flash Desalination: A Review
2010
This article focuses on a review of literature studies on steady state and dynamic modeling of the multistage flash desalination process (MSF). The review shows that both steady state and dynamic models are based on lumped parameter approach. Differences in literature models are found in the assumptions used to model the flashing stage in addition to the correlations used to determine the heat transfer coefficients, thermodynamic losses, thermodynamic and transport properties. Interestingly, literature indicates a rapid progress made in software used for coding and solution of the model equations. The review shows a limited number of literature models for the internals of the flashing stage…
Modeling and simulation of dense cloud dispersion in urban areas by means of computational fluid dynamics
2011
Abstract The formation of toxic heavy clouds as a result of sudden accidental releases from mobile containers, such as road tankers or railway tank cars, may occur inside urban areas so the problem arises of their consequences evaluation. Due to the semi-confined nature of the dispersion site simplified models may often be inappropriate. As an alternative, computational fluid dynamics (CFD) has the potential to provide realistic simulations even for geometrically complex scenarios since the heavy gas dispersion process is described by basic conservation equations with a reduced number of approximations. In the present work a commercial general purpose CFD code (CFX 4.4 by Ansys®) is employe…
Analysis of the bubbling behaviour of 2D gas solid fluidized beds
2008
Abstract In the field of gas–solid fluidization, bubbles, and all features regarding them, have a very great importance, as they significantly affect the process performance. Numerous experimental studies on bubbles, and their formation, evolution, and properties, have been performed in the past. These investigations appear particularly difficult, due to the nature of these systems, since the gas phase is distributed in both the bubble and the emulsion phase. Several experimental approaches have been developed to tackle this study. Among these, the Digital Image Analysis Technique purposely developed in Part I of the present work, based on the use of a video camera for monitoring the phenom…
Optimization of a Vehicle Shape by CFD Code
2005
In this paper, fluid dynamics simulations have been executed using a CFD (Computational Fluid Dynamics) commercial code, on a Maserati Biturbo mod. 222 - 1988. At first some surfaces are optimised, choosing the more important ones for the reduction of the resistance, by a manual variation of their geometry, hence a large surface is optimised in an automatic way, by means of an own software, developed in the MatLab environment, returning the optimised surface according to a specific objective function (the resistance in this paper). The aerodynamics resistance results are given under the form of aerodynamics penetration coefficient CD, taking into account the vehicle shape effect, the speed,…
Large-Eddy Simulation of Turbulent Flow in an Unbaffled Stirred Tank Driven by a Rushton Turbine
2005
The turbulent flow fieldgeneratedin an unbaffledstirredtank by a Rushton turbine was computedby large-eddy simulation (LES). The Smagorinsky model was used to model the unresolved, or sub-grid, scales. A general purpose CFD code was appropriately modified in order to allow the computation of the sub-gridviscosity andto perform statistics on the computedresults. The numerical predictions were comparedwith the literature results for comparable configurations andwith experimental data obtainedusing particle image velocimetry. A very goodagreement was foundas regards both time-averagedresolv edfield s andturb ulence quantities. 2004 Elsevier Ltd. All rights reserved.
Mathematical and numerical modeling of an airlift perfusion bioreactor for tissue engineering applications
2022
The Tissue Engineering (TE) strategy is widely focused on the development of perfusion bioreactors to promote the production of three-dimensional (3D) functional tissues. To optimize tissue production, it is worth investigating the engineering parameters of a bioreactor system for identifying a beneficial range of operation variables. Mathematical and numerical modeling of a perfusion bioreactor is capable to provide relevant insights into the fluid flow and nutrients transport while predicting experimental data and exploring the impact of changing operating parameters, such as fluid velocities. In this work, the hydrodynamic parameters and oxygen transport were investigated using mathemati…
Heavy Gas Dispersion Modelling Over a Topographically Complex Mesoscale
2005
Potentially dangerous events involving heavy gas dispersion and their severe consequences have been largely publicized by the media. Simplified models have been widely applied to describe the effects of these accidents. However, most simplified models deal with flat terrain scenarios and are based on quite crude simplifications of the complex phenomenology involved. In this paper the possibility of simulating the dispersion of heavy gas clouds over a large topographically complex area (tens of km) by a general purpose computational fluid dynamics (CFD) code is investigated. The aim is that of setting up a tool able to produce a realistic description of such dispersion processes, whose resul…
Effect of Boundary Conditions on the Hydrogen Absorption in a Metal Hydride Reactor
2018
In this paper, a numerical study of the heat and mass transfer in a metal hydride reactor is presented. The reaction within the metal hydride reactor is exothermic. That makes the hydriding process less effective. Thus, a cooling system is needed to reduce the temperature in order to increase the amount of the absorbed hydrogen. The geometry of the studied reactor is cylindrical with (H=3cm) of height and (R=5cm) of radius. A heat exchanger is considered in the lateral and base walls. The transfer is considered two-dimensional and transient. The governing equations of the transfer phenomenon are based on the conservation principle of mass, momentum and energy. Using the finite volume method…
Magnetic field dynamos and magnetically triggered flow instabilities
2017
The project A2 of the LIMTECH Alliance aimed at a better understanding of those magnetohydrodynamic instabilities that are relevant for the generation and the action of cosmic magnetic fields. These comprise the hydromagnetic dynamo effect and various magnetically triggered flow instabilities, such as the magnetorotational instability and the Tayler instability. The project was intended to support the experimental capabilities to become available in the framework of the DREsden Sodium facility for DYNamo and thermohydraulic studies (DRESDYN). An associated starting grant was focused on the dimensioning of a liquid metal experiment on the newly found magnetic destabilization of rotating flow…