Search results for " Formal languages"

showing 10 items of 79 documents

A Classification of Trapezoidal Words

2011

Trapezoidal words are finite words having at most n+1 distinct factors of length n, for every n>=0. They encompass finite Sturmian words. We distinguish trapezoidal words into two disjoint subsets: open and closed trapezoidal words. A trapezoidal word is closed if its longest repeated prefix has exactly two occurrences in the word, the second one being a suffix of the word. Otherwise it is open. We show that open trapezoidal words are all primitive and that closed trapezoidal words are all Sturmian. We then show that trapezoidal palindromes are closed (and therefore Sturmian). This allows us to characterize the special factors of Sturmian palindromes. We end with several open problems.

FOS: Computer and information sciencesFormal Languages and Automata Theory (cs.FL)lcsh:Mathematicstrapezoidal words Sturmian words special factors palindromesPalindromeComputer Science - Formal Languages and Automata TheoryDisjoint setslcsh:QA1-939lcsh:QA75.5-76.95PrefixCombinatoricsF.4.3FOS: MathematicsMathematics - CombinatoricsCombinatorics (math.CO)lcsh:Electronic computers. Computer scienceSuffixWord (group theory)Mathematics
researchProduct

Abelian-Square-Rich Words

2017

An abelian square is the concatenation of two words that are anagrams of one another. A word of length $n$ can contain at most $\Theta(n^2)$ distinct factors, and there exist words of length $n$ containing $\Theta(n^2)$ distinct abelian-square factors, that is, distinct factors that are abelian squares. This motivates us to study infinite words such that the number of distinct abelian-square factors of length $n$ grows quadratically with $n$. More precisely, we say that an infinite word $w$ is {\it abelian-square-rich} if, for every $n$, every factor of $w$ of length $n$ contains, on average, a number of distinct abelian-square factors that is quadratic in $n$; and {\it uniformly abelian-sq…

FOS: Computer and information sciencesGeneral Computer ScienceDiscrete Mathematics (cs.DM)Formal Languages and Automata Theory (cs.FL)Abelian squareComputer Science - Formal Languages and Automata Theory0102 computer and information sciences02 engineering and technology68R1501 natural sciencesSquare (algebra)Theoretical Computer ScienceCombinatorics0202 electrical engineering electronic engineering information engineeringFOS: MathematicsMathematics - CombinatoricsAbelian groupQuotientMathematicsDiscrete mathematicsComputer Science (all)Sturmian wordSturmian wordFunction (mathematics)Thue–Morse word010201 computation theory & mathematicsBounded functionThue-Morse wordExponentAbelian square; Sturmian word; Thue-Morse word; Theoretical Computer Science; Computer Science (all)020201 artificial intelligence & image processingCombinatorics (math.CO)Word (group theory)Computer Science::Formal Languages and Automata TheoryComputer Science - Discrete Mathematics
researchProduct

On the least number of palindromes contained in an infinite word

2013

We investigate the least number of palindromic factors in an infinite word. We first consider general alphabets, and give answers to this problem for periodic and non-periodic words, closed or not under reversal of factors. We then investigate the same problem when the alphabet has size two.

FOS: Computer and information sciencesGeneral Computer ScienceDiscrete Mathematics (cs.DM)Formal Languages and Automata Theory (cs.FL)Computer Science - Formal Languages and Automata Theory0102 computer and information sciences68R1501 natural sciencesTheoretical Computer ScienceCombinatorics[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]FOS: MathematicsMathematics - CombinatoricsPalindromes0101 mathematicsComputingMilieux_MISCELLANEOUSMathematicsCombinatorics on wordDiscrete mathematics010102 general mathematicsPalindromeCombinatorics on words010201 computation theory & mathematicsCombinatorics (math.CO)AlphabetWord (group theory)Computer Science::Formal Languages and Automata TheoryComputer Science - Discrete Mathematics
researchProduct

Generating a Gray code for prefix normal words in amortized polylogarithmic time per word

2020

A prefix normal word is a binary word with the property that no substring has more $1$s than the prefix of the same length. By proving that the set of prefix normal words is a bubble language, we can exhaustively list all prefix normal words of length $n$ as a combinatorial Gray code, where successive strings differ by at most two swaps or bit flips. This Gray code can be generated in $\Oh(\log^2 n)$ amortized time per word, while the best generation algorithm hitherto has $\Oh(n)$ running time per word. We also present a membership tester for prefix normal words, as well as a novel characterization of bubble languages.

FOS: Computer and information sciencesGeneral Computer ScienceFormal Languages and Automata Theory (cs.FL)Property (programming)combinatorial Gray codeComputer Science - Formal Languages and Automata TheoryData_CODINGANDINFORMATIONTHEORY0102 computer and information sciences02 engineering and technologyCharacterization (mathematics)01 natural sciencesTheoretical Computer ScienceCombinatoricsSet (abstract data type)Gray codeComputer Science - Data Structures and Algorithms0202 electrical engineering electronic engineering information engineeringData Structures and Algorithms (cs.DS)MathematicsAmortized analysisSettore INF/01 - Informaticaprefix normal wordsSubstringcombinatorial generationPrefixjumbled pattern matching010201 computation theory & mathematics020201 artificial intelligence & image processingbinary languagesprefix normal words binary languages combinatorial Gray code combinatorial generation jumbled pattern matchingWord (computer architecture)Theoretical Computer Science
researchProduct

On the Lie complexity of Sturmian words

2022

Bell and Shallit recently introduced the Lie complexity of an infinite word $s$ as the function counting for each length the number of conjugacy classes of words whose elements are all factors of $s$. They proved, using algebraic techniques, that the Lie complexity is bounded above by the first difference of the factor complexity plus one; hence, it is uniformly bounded for words with linear factor complexity, and, in particular, it is at most 2 for Sturmian words, which are precisely the words with factor complexity $n+1$ for every $n$. In this note, we provide an elementary combinatorial proof of the result of Bell and Shallit and give an exact formula for the Lie complexity of any Sturmi…

FOS: Computer and information sciencesGeneral Computer ScienceSettore INF/01 - InformaticaDiscrete Mathematics (cs.DM)Formal Languages and Automata Theory (cs.FL)Sturmian wordComputer Science - Formal Languages and Automata TheoryComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)G.2.168R15Lie complexityTheoretical Computer ScienceLie complexity Sturmian wordFOS: MathematicsMathematics - CombinatoricsCombinatorics (math.CO)Computer Science::Formal Languages and Automata TheoryComputer Science - Discrete Mathematics
researchProduct

On the Structure of Bispecial Sturmian Words

2013

A balanced word is one in which any two factors of the same length contain the same number of each letter of the alphabet up to one. Finite binary balanced words are called Sturmian words. A Sturmian word is bispecial if it can be extended to the left and to the right with both letters remaining a Sturmian word. There is a deep relation between bispecial Sturmian words and Christoffel words, that are the digital approximations of Euclidean segments in the plane. In 1997, J. Berstel and A. de Luca proved that \emph{palindromic} bispecial Sturmian words are precisely the maximal internal factors of \emph{primitive} Christoffel words. We extend this result by showing that bispecial Sturmian wo…

FOS: Computer and information sciencesGeneral Computer ScienceSpecial factorDiscrete Mathematics (cs.DM)Computer Networks and CommunicationsApproximations of πFormal Languages and Automata Theory (cs.FL)Computer Science - Formal Languages and Automata TheoryEnumerative formula68R15Characterization (mathematics)Minimal forbidden wordTheoretical Computer ScienceCombinatoricsComputer Science::Discrete MathematicsEuclidean geometryPhysics::Atomic PhysicsMathematicsChristoffel symbolsApplied MathematicsPalindromeSturmian wordSturmian wordComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Combinatorics on wordsComputational Theory and MathematicsWord (group theory)Computer Science::Formal Languages and Automata TheoryChristoffel wordComputer Science - Discrete Mathematics
researchProduct

Classical automata on promise problems

2015

Promise problems were mainly studied in quantum automata theory. Here we focus on state complexity of classical automata for promise problems. First, it was known that there is a family of unary promise problems solvable by quantum automata by using a single qubit, but the number of states required by corresponding one-way deterministic automata cannot be bounded by a constant. For this family, we show that even two-way nondeterminism does not help to save a single state. By comparing this with the corresponding state complexity of alternating machines, we then get a tight exponential gap between two-way nondeterministic and one-way alternating automata solving unary promise problems. Secon…

FOS: Computer and information sciencesNested wordTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESUnary operationGeneral Computer ScienceFormal Languages and Automata Theory (cs.FL)nondeterministic automataComputer Science - Formal Languages and Automata Theoryω-automatonComputational Complexity (cs.CC)Theoretical Computer ScienceContinuous spatial automatonQuantum finite automataDiscrete Mathematics and Combinatoricsalternating automatapromise problemsMathematicsprobabilistic automataNonlinear Sciences::Cellular Automata and Lattice GasesMobile automatonNondeterministic algorithmAlgebra[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]Computer Science - Computational ComplexityTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESAutomata theorydescriptional complexityComputer Science::Formal Languages and Automata Theory
researchProduct

On prefix normal words and prefix normal forms

2016

A $1$-prefix normal word is a binary word with the property that no factor has more $1$s than the prefix of the same length; a $0$-prefix normal word is defined analogously. These words arise in the context of indexed binary jumbled pattern matching, where the aim is to decide whether a word has a factor with a given number of $1$s and $0$s (a given Parikh vector). Each binary word has an associated set of Parikh vectors of the factors of the word. Using prefix normal words, we provide a characterization of the equivalence class of binary words having the same set of Parikh vectors of their factors. We prove that the language of prefix normal words is not context-free and is strictly contai…

FOS: Computer and information sciencesPrefix codePrefix normal wordPre-necklaceDiscrete Mathematics (cs.DM)General Computer ScienceFormal Languages and Automata Theory (cs.FL)Binary numberComputer Science - Formal Languages and Automata TheoryContext (language use)Binary languageLyndon words0102 computer and information sciences02 engineering and technologyPrefix grammarprefix normal formsKraft's inequalityCharacterization (mathematics)Lyndon word01 natural sciencesPrefix normal formenumerationTheoretical Computer ScienceFOS: Mathematics0202 electrical engineering electronic engineering information engineeringMathematics - CombinatoricsMathematicsDiscrete mathematicsprefix normal words prefix normal forms binary languages binary jumbled pattern matching pre-necklaces Lyndon words enumerationbinary jumbled pattern matchingSettore INF/01 - InformaticaComputer Science (all)pre-necklacesComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)prefix normal wordsPrefix010201 computation theory & mathematics020201 artificial intelligence & image processingCombinatorics (math.CO)binary languagesComputer Science::Formal Languages and Automata TheoryWord (group theory)Computer Science - Discrete MathematicsTheoretical Computer Science
researchProduct

Primitive sets of words

2020

Given a (finite or infinite) subset $X$ of the free monoid $A^*$ over a finite alphabet $A$, the rank of $X$ is the minimal cardinality of a set $F$ such that $X \subseteq F^*$. We say that a submonoid $M$ generated by $k$ elements of $A^*$ is {\em $k$-maximal} if there does not exist another submonoid generated by at most $k$ words containing $M$. We call a set $X \subseteq A^*$ {\em primitive} if it is the basis of a $|X|$-maximal submonoid. This definition encompasses the notion of primitive word -- in fact, $\{w\}$ is a primitive set if and only if $w$ is a primitive word. By definition, for any set $X$, there exists a primitive set $Y$ such that $X \subseteq Y^*$. We therefore call $Y$…

FOS: Computer and information sciencesPrimitive setDiscrete Mathematics (cs.DM)General Computer ScienceFormal Languages and Automata Theory (cs.FL)Pseudo-repetitionComputer Science - Formal Languages and Automata Theory0102 computer and information sciences02 engineering and technology01 natural sciencesTheoretical Computer ScienceCombinatoricsCardinalityFree monoidBi-rootFOS: Mathematics0202 electrical engineering electronic engineering information engineeringMathematics - CombinatoricsRank (graph theory)Primitive root modulo nMathematicsHidden repetitionSettore INF/01 - InformaticaIntersection (set theory)k-maximal monoidFunction (mathematics)Basis (universal algebra)010201 computation theory & mathematics020201 artificial intelligence & image processingCombinatorics (math.CO)Computer Science::Formal Languages and Automata TheoryWord (group theory)Computer Science - Discrete Mathematics
researchProduct

Quantum Pushdown Automata

2001

Quantum finite automata, as well as quantum pushdown automata (QPA) were first introduced by C. Moore and J. P. Crutchfield. In this paper we introduce the notion of QPA in a non-equivalent way, including unitarity criteria, by using the definition of quantum finite automata of Kondacs and Watrous. It is established that the unitarity criteria of QPA are not equivalent to the corresponding unitarity criteria of quantum Turing machines. We show that QPA can recognize every regular language. Finally we present some simple languages recognized by QPA, not recognizable by deterministic pushdown automata.

FOS: Computer and information sciencesQuantum PhysicsComputer Science - Computational ComplexityFormal Languages and Automata Theory (cs.FL)FOS: Physical sciencesComputer Science - Formal Languages and Automata TheoryComputational Complexity (cs.CC)Quantum Physics (quant-ph)Computer Science::Formal Languages and Automata Theory
researchProduct