Search results for " General"
showing 10 items of 33759 documents
The uniform convergence of a double sequence of functions at a point and Korovkin-type approximation theorems
2020
Abstract In this paper, we introduce an interesting kind of convergence for a double sequence called the uniform convergence at a point. We give an example and demonstrate a Korovkin-type approximation theorem for a double sequence of functions using the uniform convergence at a point. Then we show that our result is stronger than the Korovkin theorem given by Volkov and present several graphs. Finally, in the last section, we compute the rate of convergence.
Partially hyperbolic diffeomorphisms with a uniformly compact center foliation: the quotient dynamics
2016
We show that a partially hyperbolic$C^{1}$-diffeomorphism$f:M\rightarrow M$with a uniformly compact$f$-invariant center foliation${\mathcal{F}}^{c}$is dynamically coherent. Further, the induced homeomorphism$F:M/{\mathcal{F}}^{c}\rightarrow M/{\mathcal{F}}^{c}$on the quotient space of the center foliation has the shadowing property, i.e. for every${\it\epsilon}>0$there exists${\it\delta}>0$such that every${\it\delta}$-pseudo-orbit of center leaves is${\it\epsilon}$-shadowed by an orbit of center leaves. Although the shadowing orbit is not necessarily unique, we prove the density of periodic center leaves inside the chain recurrent set of the quotient dynamics. Other interesting proper…
q–analogue of generalized Ruschweyh operator related to a new subfamily of multivalent functions
2019
Abstract A new subfamily of p–valent analytic functions with negative coefficients in terms of q–analogue of generalized Ruschweyh operator is considered. Several properties concerning coefficient bounds, weighted and arithmetic mean, radii of starlikeness, convexity and close-to-convexity are obtained. A family of class preserving integral operators and integral representation are also indicated.
Existence of normal Hall subgroups by means of orders of products
2018
Let G be a finite group, let π be a set of primes and let p be a prime. We characterize the existence of a normal Hall π‐subgroup in G in terms of the order of products of certain elements of G. This theorem generalizes a characterization of A. Moretó and the second author by using the orders of products of elements for those groups having a normal Sylow p‐subgroup 6. As a consequence, we also give a π‐decomposability criterion for a finite group also by means of the orders of products.
ACL homeomorphisms and linear dilatation
2001
We establish an integrability condition on the linear dilatation to guarantee ACL.
Some approximation properties of a Durrmeyer variant ofq-Bernstein-Schurer operators
2016
Abstracts from the CECAM workshop on computer simulations of cellular automata
1989
On the Coefficients of Multiple Series with Respect to Vilenkin System
2017
Abstract We give a sufficient condition for coefficients of double series Σ Σ n,m an,m χ n,m with respect to Vilenkin system to be convergent to zero when n + m → ∞. This result can be applied to the problem of recovering coefficients of a Vilenkin series from its sum.
Voronovskaya type results and operators fixing two functions
2021
The present paper deals with positive linear operators which fix two functions. The transfer of a given sequence (Ln) of positive linear operators to a new sequence (Kn) is investigated. A general procedure to construct sequences of positive linear operators fixing two functions which form an Extended Complete Chebyshev system is described. The Voronovskaya type formula corresponding to the new sequence which is strongly influenced by the nature of the fixed functions is obtained. In the last section our results are compared with other results existing in literature.
Inverse problems for $p$-Laplace type equations under monotonicity assumptions
2016
We consider inverse problems for $p$-Laplace type equations under monotonicity assumptions. In two dimensions, we show that any two conductivities satisfying $\sigma_1 \geq \sigma_2$ and having the same nonlinear Dirichlet-to-Neumann map must be identical. The proof is based on a monotonicity inequality and the unique continuation principle for $p$-Laplace type equations. In higher dimensions, where unique continuation is not known, we obtain a similar result for conductivities close to constant.