Search results for " Geometry"

showing 10 items of 2294 documents

Structural, electronic and energetic effects in heterocyclic fluorene derivatives fused with a fulvene unit

2019

Abstract A set of 36 heterocyclic (B, N and O) fluorene (C) derivatives fused in nine ways with fulvene ring have been analyzed by means of different local aromaticity criteria. Molecular geometry of analyzed compounds were optimized at B3LYP/6-311++G(2d,2p) level of theory. The evaluation of the local aromaticity has been carried out through the use of the geometry-based harmonic oscillator model of aromaticity (HOMA) and the magnetism-based zz‐component of the nucleus independent chemical shifts calculated 1 A above the ring center (NICS1zz) indices as well as one aromaticity index derived from the Quantum Theory Atoms in Molecules (QTAIM), i.e. the para-delocalization index (PDI). Additi…

010304 chemical physicsChemical shiftAtoms in moleculesHeterocyclic fluorene derivativesHOMO-LUMO energy gapsAromaticityFluoreneFulvene010402 general chemistryCondensed Matter PhysicsKinetic energyRing (chemistry)01 natural sciencesBiochemistry0104 chemical scienceschemistry.chemical_compoundCrystallographyMolecular geometrychemistry0103 physical sciencesPhysical and Theoretical ChemistryFulveneAromaticity indexesComputational and Theoretical Chemistry
researchProduct

Germanium Dicarbide: Evidence for a T-Shaped Ground State Structure

2017

The equilibrium structure of germanium dicarbide GeC2 has been an open question since the late 1950s. Although most high-level quantum calculations predict an L-shaped geometry, a T-shaped or even a linear geometry cannot be ruled out because of the very flat potential energy surface. By recording the rotational spectrum of this dicarbide using sensitive microwave and millimeter techniques, we unambiguously establish that GeC2 adopts a vibrationally averaged T-shaped structure in its ground state. From analysis of 14 isotopologues, a precise r0 structure has been derived, yielding a Ge–C bond length of 1.952(1) A and an apex angle of 38.7(2)°.

010304 chemical physicsChemistrychemistry.chemical_elementLinear molecular geometryGermanium02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMolecular physicsBond lengthCrystallography0103 physical sciencesPotential energy surfaceGeneral Materials ScienceMillimeterIsotopologuePhysical and Theoretical Chemistry0210 nano-technologyGround stateMicrowaveThe Journal of Physical Chemistry Letters
researchProduct

Phosphasalen group IV metal complexes: synthesis, characterization and ring opening polymerization of lactide.

2020

International audience; We report the synthesis of a series of Zr and Ti complexes bearing phosphasalen which differs from salen by the incorporation of two P atoms in the ligand backbone. The reaction of phosphasalen proligands (1a-1c)H2 with Zr(CH2Ph)4 led to different products depending on the nature of the N,N-linker in the ligand. In case of ethylene-linked phosphasalen, octahedral Zr complex 2a formed as a single stereoisomer in trans geometry. With the phenylene linker, it was shown by dynamic NMR spectroscopy that complex 2b exists as a mixture of trans and cis-β isomers in solution, both enantiomers (Δ and Λ) of the cis-β isomer being in fast equilibrium with respect to the NMR tim…

010402 general chemistryLIGANDS SYNTHESIS01 natural sciencesRing-opening polymerizationCoordination complexInorganic ChemistryINDIUM COMPLEXESOctahedral molecular geometry[CHIM]Chemical SciencesSALALEN COMPLEXESCYCLIC ESTERSCOORDINATION CHEMISTRYZIRCONIUM COMPLEXES; COORDINATION CHEMISTRY; SALALEN COMPLEXES; LIGANDS SYNTHESIS; INDIUM COMPLEXES; SALEN LIGANDS; CYCLIC ESTERS; INITIATORS; CATALYSIS; ALUMINUMchemistry.chemical_classification010405 organic chemistryLigandCATALYSISCationic polymerizationNuclear magnetic resonance spectroscopyALUMINUM0104 chemical sciencesCrystallographychemistrySALEN LIGANDSAlkoxy groupINITIATORS[CHIM.OTHE]Chemical Sciences/OtherIsomerizationZIRCONIUM COMPLEXESDalton transactions (Cambridge, England : 2003)
researchProduct

Structural studies of homoisoflavonoids: NMR spectroscopy, X-ray diffraction, and theoretical calculations

2010

Abstract In this article we present a detailed structural investigation for five homoisoflavonoids, molecules important from the pharmacological point of view. For studying the electron distribution as well as its influence on the physicochemical properties, NMR spectroscopy, X-ray diffraction, and theoretical calculations have been used. Nuclear magnetic shieldings obtained by using DFT calculations for optimized molecular geometries are correlated with the experimentally determined chemical shifts. The theoretical data are well in agreement with the experimental values. The single crystal X-ray structures of homoisoflavonoid derivatives 1, 3, and 4 have been solved. The molecular geometri…

010405 organic chemistryChemistryChemical shiftOrganic ChemistryIntermolecular forceNuclear magnetic resonance spectroscopy010402 general chemistry01 natural sciences0104 chemical sciencesAnalytical ChemistryInorganic ChemistryCrystalMolecular geometryComputational chemistryX-ray crystallographyPhysical chemistryMoleculeSingle crystalSpectroscopyJournal of Molecular Structure
researchProduct

Sulfur, tin and gold derivatives of 1-(2'-pyridyl)-ortho-carborane, 1-R-2-X-1,2-C2B10H10 (R = 2'-pyridyl, X = SH, SnMe3 or AuPPh3).

2004

Reaction of the lithium salt of 1-(2'-pyridyl)-ortho-carborane, Li[1-R-1,2-C(2)B(10)H(10)](R = 2'-NC(5)H(4)), with sulfur, followed by hydrolysis, gave the mercapto-o-carborane, 1-R-2-SH-1,2-C(2)B(10)H(10) which forms chiral crystals containing helical chains of molecules linked by intermolecular S-H...N hydrogen bonds. The cage C(1)-C(2) and exo C(2)-S bond lengths (1.730(3) and 1.775(2)[Angstrom], respectively) are indicative of exo S=C pi bonding. The tin derivative 1-R-2-SnMe(3)-1,2-C(2)B(10)H(10), prepared from Li[1-R-1,2-C(2)B(10)H(10)] and Me(3)SnCl, crystallises with no significant intermolecular interactions. The pyridyl group lies in the C(1)-C(2)-Sn plane, oriented to minimise th…

010405 organic chemistryChemistryHydrogen bondStereochemistryIntermolecular forcechemistry.chemical_elementCrystal structure010402 general chemistry01 natural sciences3. Good health0104 chemical sciencesInorganic ChemistryBond lengthCrystallographyTrigonal bipyramidal molecular geometryCarboraneMoleculeTinDalton transactions (Cambridge, England : 2003)
researchProduct

Self-assembly of the tetrachlorido(oxalato)rhenate( iv ) anion with protonated organic cations: X-ray structures and magnetic properties

2016

Two novel ReIV compounds of formulae [H2bpy][ReIVCl4(ox)] (1) and [H3biim]2[ReIVCl4(ox)] (2) [H2bpy2+ = 4,4′-bipyridinium dication, H3biim+ = 2,2′-biimidazolium monocation, and ox2− = oxalate dianion] have been synthesised and magneto-structurally characterised. 1 crystallises in the monoclinic system with space group C2/c, and 2 crystallises in the triclinic system with space group P[1 with combining macron]. The ReIV ion in 1 and 2 is six-coordinate, bonded to four chloride ions and two oxalate-oxygen atoms in a distorted octahedral geometry. Short intermolecular ReIV–Cl⋯Cl–ReIV contacts, Cl⋯π type interactions and hydrogen bonds are present in the crystal lattice of both compounds, gener…

010405 organic chemistryChemistryInorganic chemistrySupramolecular chemistryGeneral ChemistryCrystal structureTriclinic crystal system010402 general chemistryCondensed Matter Physics01 natural sciencesMagnetic susceptibilityOxalate0104 chemical sciencesDicationchemistry.chemical_compoundCrystallographyOctahedral molecular geometryGeneral Materials ScienceMonoclinic crystal system
researchProduct

A trigonal prismatic anionic iron(iii) complex of a radical o-iminobenzosemiquinonate derivative: structural and spectral analyses

2017

A new iron(III) complex, [Et3NH][FeIII(L2−˙)2] (1) with a substituted o-aminophenol based ligand is reported. Complex 1 is an anionic complex with a triethylammonium cation in the lattice. It contains two O,O,N-coordinated o-iminobenzosemiquinonate(2−) radical anions with an Fe(III) centre in a high-spin configuration. The crystal structure of 1 was determined by X-ray diffraction, which revealed a trigonal prismatic coordination environment whose electronic structure was established by various physical methods including EPR, Mossbauer spectroscopy and variable-temperature (2–300 K) magnetic susceptibility measurements. Electrochemical analysis indicated primarily ligand-centred redox proce…

010405 organic chemistryChemistryLigandGeneral ChemistryCrystal structureElectronic structure010402 general chemistryTrigonal prismatic molecular geometry01 natural sciencesMagnetic susceptibilityCatalysis0104 chemical scienceslaw.inventionCrystallographylawMössbauer spectroscopyMaterials ChemistryGround stateElectron paramagnetic resonanceNew Journal of Chemistry
researchProduct

Organotin(IV) derivatives containing heteroditopic pyridyl-quinolin-8-olate ligands: Synthesis and structures

2021

Abstract Six novel neutral organotin(IV) complexes, viz. [n-Bu2Sn(L4-PyAQ)2] 1, [Bz2Sn(L4-PyAQ)2] 2, [Ph2Sn(L4-PyAQ)2] 3, [Ph2Sn(L3-PyAQ)2] 4, [Bz3Sn(L4-PyAQ)] 5 and [Ph3Sn(L4-PyAQ)] 6 have been synthesized via reactions of 3/4-pyridyl-quinolin-8-ol pro-ligands, with appropriate diorganotin oxide and triorganotin hydroxide precursors, respectively. The compounds 1-6 were characterized in solution by means of NMR spectroscopy while the solid-state structures of 1, 6, and of the solvates 2·1.5C6H6, 3·0.25C6H6, 2·4·C6H6, and 5·0.5H2O were authenticated by single crystal X-ray diffraction analysis. In the solid-state, the tin centers in 1-2·4·C6H6 are hexacoordinated and reveal a distorted cis-…

010405 organic chemistryChemistryOrganic ChemistryOxidechemistry.chemical_elementNuclear magnetic resonance spectroscopy010402 general chemistry01 natural sciencesBiochemistrySquare pyramidal molecular geometry0104 chemical sciencesInorganic ChemistryCrystallographychemistry.chemical_compoundMaterials ChemistryHydroxidePhysical and Theoretical ChemistryTinSingle crystalJournal of Organometallic Chemistry
researchProduct

Oxotris(oxalate)niobate(V): An oxalate delivery agent in the design of building blocks

2018

This work concerns the oxalate delivery process that occurs when using (NH4)3[NbO(C2O4)3]·6H2O as a suitable oxalate source in the synthesis of two compounds, [Cu(dmphen)(C2O4)(H2O)] (1) and [{Cu(dmphen)(CH3OH)}2(μ-C2O4)](ClO4)2 (2) (dmphen = 2,9-dimethyl-1,10-phenanthroline). {[Fe{HB(pz)3}(CN)2(μ-CN)]2[{Cu(dmphen)}2(μ-C2O4)]}∙xCH3OH (3) (2.0 ≤ x ≤ 2.4) was obtained by reacting 2 and PPh4[Fe{HB(pz)3}(CN)3]∙H2O [ = tetraphenylphosphonium and = tris(pyrazolyl)borate]. Crystal structures of 1–3 have been determined by single-crystal X-ray diffraction experiments: 1 is a mononuclear trigonal bipyramidal copper(II) species, 2 is a centrosymmetric oxalato-bridged dicopper(II) complex, and 3 consi…

010405 organic chemistryChemistrychemistry.chemical_elementCrystal structure010402 general chemistry01 natural sciencesCopperOxalate0104 chemical scienceschemistry.chemical_compoundCrystallographyTrigonal bipyramidal molecular geometryIntramolecular forceMaterials ChemistryAntiferromagnetismPhysical and Theoretical ChemistryBoronNatural bond orbital
researchProduct

Mixed phenoxo and azido bridged dinuclear nickel(II) and copper(II) compounds with N,N,O-donor schiff bases: Synthesis, structure, DNA binding, DFT a…

2019

Abstract Two dinuclear complexes, µ-phenoxo, µ1,1-azido bridged [Ni2(L)2(µ1,1-N3)(N3)(CH3OH)] (1) and µ-phenoxo, µ1,1-azido bridged [Cu2(L)2(µ1,1-N3)(N3)] (2) bearing HL as a blocking co-ligand produced by the 1:1 condensation of N-methyl 1,3 propanediamine with o-vanillin have been synthesized and successfully characterized by elemental analyses, IR and electronic spectroscopy, single-crystal X-ray diffraction for 1 and DFT optimization for 2. X-ray crystal structure discloses that the asymmetric unit of 1 consists of two nickel(II) ions exhibiting a six-coordinate octahedral coordination with µ-phenoxo, µ1,1-azido bridging dimeric structure. The DFT optimization of 2 reveals the five-coor…

010405 organic chemistryChemistrychemistry.chemical_elementCrystal structure010402 general chemistry01 natural sciencesFluorescenceCopperElectron spectroscopySquare pyramidal molecular geometry0104 chemical sciencesInorganic ChemistryNickelCrystallographyOctahedronDocking (molecular)Materials ChemistryPhysical and Theoretical ChemistryInorganica Chimica Acta
researchProduct