Search results for " High-Energy"

showing 10 items of 49 documents

Electron diffraction, X-ray powder diffraction and pair-distribution-function analyses to determine the crystal structures of Pigment Yellow 213, C23…

2009

The crystal structure of the nanocrystalline alpha phase of Pigment Yellow 213 (P.Y. 213) was solved by a combination of single-crystal electron diffraction and X-ray powder diffraction, despite the poor crystallinity of the material. The molecules form an efficient dense packing, which explains the observed insolubility and weather fastness of the pigment. The pair-distribution function (PDF) of the alpha phase is consistent with the determined crystal structure. The beta phase of P.Y. 213 shows even lower crystal quality, so extracting any structural information directly from the diffraction data is not possible. PDF analysis indicates the beta phase to have a columnar structure with a si…

DiffractionModels MolecularAza CompoundsReflection high-energy electron diffractionChemistryMolecular ConformationGeneral MedicineCrystal structurePair-distribution functionHeterocyclic Compounds 4 or More RingsGeneral Biochemistry Genetics and Molecular BiologyPigment Yellow 213CrystalCrystallinityCrystallographyElectron diffractionElectron diffractionMicroscopy Electron TransmissionX-ray powder diffractionElectron diffraction; Pair-distribution function; Pigment Yellow 213; X-ray powder diffractionParticle SizeColoring AgentsPowder diffractionPowder DiffractionElectron backscatter diffractionActa crystallographica. Section B, Structural science
researchProduct

Cooperative atomic motion probed by ultrafast transmission electron diffraction

2015

In numerous solids exhibiting broken symmetry ground states, changes in electronic (spin) structure are accompanied by structural changes. Femtosecond time-resolved techniques recently contributed many important insights into the origin of their ground states by tracking dynamics of the electronic subsystem with femtosecond light pulses. Moreover, several studies of structural dynamics in systems with periodic lattice modulation (PLD) were performed. Since intensities of the super-lattice diffraction peaks are in the first approximation proportional to the square of the PLD amplitude, their temporal dynamics provides access to cooperative atomic motion. This process takes place on a fractio…

DiffractionPhysicsOpticsReflection high-energy electron diffractionElectron diffractionbusiness.industryLattice (order)SuperlatticeExcited stateFemtosecondElectronbusinessMolecular physicsSPIE Proceedings
researchProduct

The role of electron diffraction in zeolite structure determination

2006

Because electron diffraction can sample individual microcrystals, it is clear that this single crystal method can facilitate, in at least two ways, structure determination for inorganic materials, such as zeolites, that are preferentially microcrystalline. First, in a qualitative application, three-dimensional tilts of individual small crystals, to map the reciprocal lattice, greatly facilitates unit cell and space group determination when powder diffraction indexing programs fail. If incoherent multiple scattering leads to violation of systematic absences, these absences can be restored by collection of precession diffraction patterns based on the Vincent-Midgley method [1], as demonstrate…

DiffractionReflection high-energy electron diffractionChemistryGas electron diffractionElectron crystallographybusiness.industrySayre equationMolecular physicsOpticsElectron diffractionStructural BiologyDirect methodsbusinessPowder diffractionActa Crystallographica Section A Foundations of Crystallography
researchProduct

Automated electron diffraction tomography - a new tool for nano crystal structure analysis

2011

Automated electron Diffraction Tomography (ADT) comprises an upcoming method for “ab intio” structure analysis of nano crystals. ADT allows fine sampling of the reciprocal space by sequential collection of electron diffraction patterns while tilting a nano crystal in fixed tilt steps around an arbitrary axis. Electron diffraction is collected in nano diffraction mode (NED) with a semi-parallel beam with a diameter down to 50 nm. For crystal tracking micro-probe STEM imaging is used. Full automation of the acquisition procedure allowed optimisation of the electron dose distribution and therefore analysis of highly beam sensitive samples. Cell parameters, space group and reflection intensitie…

DiffractionReflection high-energy electron diffractionChemistrybusiness.industryGeneral ChemistryCondensed Matter Physicsstructure determinationCrystalReciprocal latticeOpticsreciprocal space tomographyElectron diffractionelectron diffraction; reciprocal space tomography; structure determinationelectron diffractionGeneral Materials ScienceDiffraction topographybusinessPowder diffractionElectron backscatter diffraction
researchProduct

Elucidating structural order and disorder phenomena in mullite-type Al4B2O9 by automated electron diffraction tomography

2017

The crystal structure and disorder phenomena of Al4B2O9, an aluminum borate from the mullite-type family, were studied using automated diffraction tomography (ADT), a recently established method for collection and analysis of electron diffraction data. Al4B2O9, prepared by sol-gel approach, crystallizes in the monoclinic space group C2/m. The ab initio structure determination based on three-dimensional electron diffraction data from single ordered crystals reveals that edge-connected AlO6 octahedra expanding along the b axis constitute the backbone. The ordered structure (A) was confirmed by TEM and HAADF-STEM images. Furthermore, disordered crystals with diffuse scattering along the b axis…

DiffractionReflection high-energy electron diffractionMaterials scienceGas electron diffraction02 engineering and technologyCrystal structure010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciences0104 chemical sciencesElectronic Optical and Magnetic MaterialsInorganic ChemistryDiffraction tomographyCrystallographyElectron diffractionMaterials ChemistryCeramics and CompositesPhysical and Theoretical Chemistry0210 nano-technologySuperstructure (condensed matter)Electron backscatter diffractionJournal of Solid State Chemistry
researchProduct

Towards automated diffraction tomography: Part I—Data acquisition

2007

Abstract The ultimate aim of electron diffraction data collection for structure analysis is to sample the reciprocal space as accurately as possible to obtain a high-quality data set for crystal structure determination. Besides a more precise lattice parameter determination, fine sampling is expected to deliver superior data on reflection intensities, which is crucial for subsequent structure analysis. Traditionally, three-dimensional (3D) diffraction data are collected by manually tilting a crystal around a selected crystallographic axis and recording a set of diffraction patterns (a tilt series) at various crystallographic zones. In a second step, diffraction data from these zones are com…

DiffractionReflection high-energy electron diffractionbusiness.industryChemistryAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsData setDiffraction tomographyOpticsData acquisitionPrecession electron diffractionSelected area diffractionbusinessInstrumentationElectron backscatter diffractionUltramicroscopy
researchProduct

Ab Initio Structure Determination of Vaterite by Automated Electron Diffraction

2012

tion that is fundamental for understanding material properties. Still, a number of compounds have eluded such kinds of analysis because they are nanocrystalline, highly disordered, with strong pseudosymmetries or available only in small amounts in polyphasic or polymorphic systems. These materials are crystallographically intractable with conventional Xray or synchrotron radiation diffraction techniques. Single nanoparticles can be visualized by high-resolution transmission electron microscopy (HR-TEM) up to sub�ngstrom resolution, [2] but obtaining 3D information is still a difficult task, especially for highly beam-sensitive materials and crystal structures with long cell parameters. Elec…

DiffractionReflection high-energy electron diffractionmetastable phaseElectron crystallographyChemistryResolution (electron density)Analytical chemistrybiomineralization; calcium carbonate; electron crystallography; metastable phase; structure determinationElectronsGeneral ChemistrybiomineralizationCatalysisNanocrystalline materialstructure determinationAutomationCrystallographyelectron crystallographyX-Ray DiffractionElectron diffractionMicroscopy Electron ScanningNanoparticlescalcium carbonateAntacidsPowder diffractionElectron backscatter diffraction
researchProduct

Preparation of superconducting thin films of UNiAl

2005

Abstract Epitaxial thin films of the unconventional heavy fermion superconductor UNi 2 Al 3 we prepared by coevaporation of the elementary components in a molecular beam epitaxy system (MBE). The phase purity and structural quality of the films deposited on (0 1 0)- or (1 1 2)-oriented YAlO 3 substrates were studied by X-ray diffraction and RHEED. The observed R ( T ) behavior is consistent with data obtained from bulk samples and proves the purity of the films. Superconductivity was found with transition temperature T c =0.97 K.

DiffractionSuperconductivityReflection high-energy electron diffractionQuality (physics)Materials scienceCondensed matter physicsTransition temperatureElectrical and Electronic EngineeringThin filmHeavy fermion superconductorCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsMolecular beam epitaxyPhysica B: Condensed Matter
researchProduct

Applications of automated diffraction tomography (ADT) on nanocrystalline porous materials

2013

Abstract Many porous materials, both inorganic and hybrid organic–inorganic, can only be synthesized as nanocrystals. X-ray powder diffraction delivers one-dimensional data from the overall sample and is therefore often limited by peak overlap at low or medium resolution and by peak broadening. Thus, structure solution of materials with large unit cells and low symmetry, disorder or pseudosymmetry, or available only in polyphasic systems, turns out to be problematic or even impossible. Electron diffraction allows collecting three-dimensional structure information from nanocrystalline materials, but is traditionally biased by low completeness of the diffraction data, dynamical scattering and…

DiffractionZeoliteReflection high-energy electron diffractionChemistrybusiness.industryGeneral ChemistryElectron diffraction; MOF; Structure determination; ZeoliteCondensed Matter PhysicsNanocrystalline materialDiffraction tomographyElectron diffractionOpticsElectron diffractionMechanics of MaterialsGeneral Materials SciencePorous mediumbusinessStructure determinationPowder diffractionMOFElectron backscatter diffraction
researchProduct

Application of delta recycling to electron automated diffraction tomography data from inorganic crystalline nanovolumes

2013

δ Recycling is a simple procedure for directly extracting phase information from Patterson-type functions [Rius (2012). Acta Cryst. A68, 399-400]. This new phasing method has a clear theoretical basis and was developed with ideal single-crystal X-ray diffraction data. On the other hand, introduction of the automated diffraction tomography (ADT) technique has represented a significant advance in electron diffraction data collection [Kolb et al. (2007). Ultramicroscopy, 107, 507-513]. When combined with precession electron diffraction, it delivers quasi-kinematical intensity data even for complex inorganic compounds, so that single-crystal diffraction data of nanometric volumes are now availa…

Diffraction[delta] recycling; direct methods; structure solution; electron diffraction; automated diffraction tomography; nano electron diffraction; precession electron diffraction; nanocrystals.Reflection high-energy electron diffractionMaterials scienceGas electron diffractionAnalytical chemistrydirect methodsDiffraction tomographyprecession electron diffractionElectron diffractionnanocrystalsStructural BiologyDirect methodsstructure solutionautomated diffraction tomographynano electron diffractionPrecession electron diffractionelectron diffractionElectron backscatter diffraction[delta] recycling
researchProduct