Search results for " Hydrodynamic"

showing 10 items of 121 documents

Analysis of the viscous quantum hydrodynamic equations for semiconductors

2004

The steady-state viscous quantum hydrodynamic model in one space dimension is studied. The model consists of the continuity equations for the particle and current densities, coupled to the Poisson equation for the electrostatic potential. The equations are derived from a Wigner–Fokker–Planck model and they contain a third-order quantum correction term and second-order viscous terms. The existence of classical solutions is proved for “weakly supersonic” quantum flows. This means that a smallness condition on the particle velocity is still needed but the bound is allowed to be larger than for classical subsonic flows. Furthermore, the uniqueness of solutions and various asymptotic limits (sem…

PhysicsElliptic curveClassical mechanicsInviscid flowQuantum hydrodynamicsApplied MathematicsSemiclassical physicsUniquenessPoisson's equationQuantumExponential functionEuropean Journal of Applied Mathematics
researchProduct

Simple absorbing layer conditions for shallow wave simulations with Smoothed Particle Hydrodynamics

2013

Abstract We study and implement a simple method, based on the Perfectly Matched Layer approach, to treat non reflecting boundary conditions with the Smoothed Particles Hydrodynamics numerical algorithm. The method is based on the concept of physical damping operating on a fictitious layer added to the computational domain. The method works for both 1D and 2D cases, but here we illustrate it in the case of 1D and 2D time dependent shallow waves propagating in a finite domain.

PhysicsEnvironmental EngineeringOcean EngineeringFluid mechanicsMechanicsFluid mechanics Boundary condition Absorbing layer Lagrangian numerical method SPH Shallow water modelDomain (mathematical analysis)Computational physicsSmoothed-particle hydrodynamicsPerfectly matched layerSimple (abstract algebra)Boundary value problemLayer (object-oriented design)Ocean Engineering
researchProduct

Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity.

2008

This article presents a comprehensive overview of numerical hydrodynamics and magneto-hydrodynamics (MHD) in general relativity. Some significant additions have been incorporated with respect to the previous two versions of this review (2000, 2003), most notably the coverage of general-relativistic MHD, a field in which remarkable activity and progress has occurred in the last few years. Correspondingly, the discussion of astrophysical simulations in general-relativistic hydrodynamics is enlarged to account for recent relevant advances, while those dealing with general-relativistic MHD are amply covered in this review for the first time. The basic outline of this article is nevertheless sim…

PhysicsField (physics)Physics and Astronomy (miscellaneous)General relativityNumerical analysisStructure (category theory)Review Articlelcsh:Atomic physics. Constitution and properties of matterlcsh:QC170-197Relativistic hydrodynamicsMagnetohydrodynamicsTheoretical physicsNumerical relativityGravitational fieldNumerical relativityGravitational collapseHydrodynamicsMagnetohydrodynamicsLiving reviews in relativity
researchProduct

The relaxation-time limit in the quantum hydrodynamic equations for semiconductors

2006

Abstract The relaxation-time limit from the quantum hydrodynamic model to the quantum drift–diffusion equations in R 3 is shown for solutions which are small perturbations of the steady state. The quantum hydrodynamic equations consist of the isentropic Euler equations for the particle density and current density including the quantum Bohm potential and a momentum relaxation term. The momentum equation is highly nonlinear and contains a dispersive term with third-order derivatives. The equations are self-consistently coupled to the Poisson equation for the electrostatic potential. The relaxation-time limit is performed both in the stationary and the transient model. The main assumptions are…

PhysicsIndependent equationApplied MathematicsGlobal relaxation-time limitQuantum hydrodynamic equationsEuler equationsMomentumNonlinear systemsymbols.namesakeClassical mechanicsThird-order derivativesMaster equationQuantum drift–diffusion equationssymbolsMethod of quantum characteristicsPoisson's equationQuantum dissipationAnalysisJournal of Differential Equations
researchProduct

Nonlinear stability of relativistic sheared planar jets

2005

The linear and non-linear stability of sheared, relativistic planar jets is studied by means of linear stability analysis and numerical hydrodynamical simulations. Our results extend the previous Kelvin-Hemlholtz stability studies for relativistic, planar jets in the vortex sheet approximation performed by Perucho et al. (2004a,b) by including a shear layer between the jet and the external medium and more general perturbations. The models considered span a wide range of Lorentz factors ($2.5-20$) and internal energies ($0.08 c^2-60 c^2$) and are classified into three classes according to the main characteristics of their long-term, non-linear evolution. We observe a clear separation of thes…

PhysicsInternal energyLorentz transformationAstrophysics (astro-ph)FOS: Physical sciencesAstronomy and AstrophysicsMechanicsAstrophysicsGalaxies: jets ; Hydrodynamics ; InstabilitiesUNESCO::ASTRONOMÍA Y ASTROFÍSICAAstrophysicsKinetic energyWavelengthsymbols.namesakeLorentz factorAstrophysical jetMach numberSpace and Planetary ScienceInstabilitiesVortex sheetsymbolsHydrodynamicsjets [Galaxies]:ASTRONOMÍA Y ASTROFÍSICA [UNESCO]
researchProduct

Centrality dependence of multiplicity, transverse energy, and elliptic flow from hydrodynamics

2001

The centrality dependence of the charged multiplicity, transverse energy, and elliptic flow coefficient is studied in a hydrodynamic model, using a variety of different initializations which model the initial energy or entropy production process as a hard or soft process, respectively. While the charged multiplicity depends strongly on the chosen initialization, the p_t-integrated elliptic flow for charged particles as a function of charged particle multiplicity and the p_t-differential elliptic flow for charged particles in minimum bias events turn out to be almost independent of the initial energy density profile.

PhysicsNuclear and High Energy PhysicsParticle physicsNuclear TheoryEntropy productionPhysicsElliptic flowFOS: Physical sciencesInitializationRelativistic heavy-ion collisions Elliptic flow Hydrodynamic modelCharged particleNuclear Theory (nucl-th)High Energy Physics - PhenomenologyTransverse planeHigh Energy Physics - Phenomenology (hep-ph)Quantum electrodynamicsEnergy densityMultiplicity (chemistry)Centrality
researchProduct

On the convexity of Relativistic Hydrodynamics

2013

The relativistic hydrodynamic system of equations for a perfect fluid obeying a causal equation of state is hyperbolic (Anile 1989 {\it Relativistic Fluids and Magneto-Fluids} (Cambridge: Cambridge University Press)). In this report, we derive the conditions for this system to be convex in terms of the fundamental derivative of the equation of state (Menikoff and Plohr 1989 {\it Rev. Mod. Phys.} {\bf 61} 75). The classical limit is recovered.

PhysicsPhysics and Astronomy (miscellaneous)Equation of state (cosmology)Regular polygonFOS: Physical sciencesPerfect fluidDerivativeGeneral Relativity and Quantum Cosmology (gr-qc)System of linear equationsGeneral Relativity and Quantum CosmologyRelativistic hydrodynamic systemConvexityClassical limitConvexityAstronomía y AstrofísicaMathematical physics
researchProduct

The effect of cooling on time dependent behaviour of accretion flows around black holes

2004

We present the results of several numerical simulations of two dimensional axi-symmetric accretion flows around black holes using Smoothed Particle Hydrodynamics (SPH) in the presence of cooling effects. We consider both stellar black holes and super-massive black holes. We observe that due to {\it both radial and vertical oscillation} of shock waves in the accretion flow, the luminosity and average thermal energy content of the inner disk exhibit very interesting behaviour. When power density spectra are taken, quasi-periodic variabilities are seen at a few Hz and also occasionally at hundreds of Hz for stellar black holes. For super-massive black holes, the time scale of the oscillations …

PhysicsShock waveOscillationbusiness.industryAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)FOS: Physical sciencesAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsAstrophysicsAccretion (astrophysics)Power density spectraSmoothed-particle hydrodynamicsGeneral Relativity and Quantum CosmologyAmplitudeSpace and Planetary SciencebusinessAstrophysics::Galaxy AstrophysicsThermal energy
researchProduct

The 35-d modulation of the X-ray emission of Her X-1 in the framework of the SOD model: results of a three-dimensional SPH simulation

1994

Several models have been proposed to explain the 35-d X-ray periodicity observed in Her X-1. We present the results of six three-dimensional quasi-polytropic smoothed particle hydrodynamics (SPH) simulations of the tilted, twisted accretion disc of Her X-1 carried out in the light of Roberts' slaved orienting disc model (SOD) with the intention of finding some limits to the inclination of the rotation axis of the secondary and to the value of the polytropic index γ. These results show that a γ value between 1.05 and 1.1 and an inclination angle φ of the order of 45° are the most suitable for enabling the SOD model to work in three-dimensional space. The simulated disc is rather small and th…

PhysicsSmoothed-particle hydrodynamicsClassical mechanicsSpace and Planetary ScienceStellar rotationBinary starPrecessionX-ray binaryAstronomy and AstrophysicsPolytropic processRotationSpace (mathematics)Computational physicsMonthly Notices of the Royal Astronomical Society
researchProduct

Light-scattering spectra of supercooled molecular liquids

2001

The light scattering spectra of molecular liquids are derived within a generalized hydrodynamics. The wave vector and scattering angle dependences are given in the most general case and the change of the spectral features from liquid to solidlike is discussed without phenomenological model assumptions for (general) dielectric systems without long-ranged order. Exact microscopic expressions are derived for the frequency-dependent transport kernels, generalized thermodynamic derivatives and the background spectra.

PhysicsStatistical Mechanics (cond-mat.stat-mech)Scatteringpacs:78.35.+cThermodynamicsFOS: Physical sciencesFluid mechanicsDielectricLight scatteringSpectral linePhenomenological modelpacs:64.70.Pfddc:530SupercoolingGeneralized hydrodynamicsCondensed Matter - Statistical Mechanics
researchProduct