Search results for " Image processing"
showing 10 items of 2323 documents
K-nearest neighbor driving active contours to delineate biological tumor volumes
2019
Abstract An algorithm for tumor delineation in positron emission tomography (PET) is presented. Segmentation is achieved by a local active contour algorithm, integrated and optimized with the k-nearest neighbor (KNN) classification method, which takes advantage of the stratified k-fold cross-validation strategy. The proposed approach is evaluated considering the delineation of cancers located in different body districts (i.e. brain, head and neck, and lung), and considering different PET radioactive tracers. Data are pre-processed in order to be expressed in terms of standardized uptake value, the most widely used PET quantification index. The algorithm uses an initial, operator selected re…
Patented intelligence: Cloning human decision models for Industry 4.0
2018
Industry 4.0 is a trend related to smart factories, which are cyber-physical spaces populated and controlled by the collective intelligence for the autonomous and highly flexible manufacturing purposes. Artificial Intelligence (AI) embedded into various planning, production, and management processes in Industry 4.0 must take the initiative and responsibility for making necessary real-time decisions in many cases. In this paper, we suggest the Pi-Mind technology as a compromise between completely human-expert-driven decision-making and AI-driven decision-making. Pi-Mind enables capturing, cloning and patenting essential parameters of the decision models from a particular human expert making …
Fault detection for nonlinear networked systems based on quantization and dropout compensation: An interval type-2 fuzzy-model method
2016
Abstract This paper investigates the problem of filter-based fault detection for a class of nonlinear networked systems subject to parameter uncertainties in the framework of the interval type-2 (IT2) T–S fuzzy model-based approach. The Bernoulli random distribution process and logarithm quantizer are used to describe the measurement loss and signals quantization, respectively. In the framework of the IT2 T–S fuzzy model, the parameter uncertainty is handled by the membership functions with lower and upper bounds. A novel IT2 fault detection filter is designed to guarantee the residual system to be stochastically stable and satisfy the predefined H ∞ performance. It should be mentioned that…
George-Veeramani Fuzzy Metrics Revised
2018
In this note, we present an alternative approach to the concept of a fuzzy metric, calling it a revised fuzzy metric. In contrast to the traditional approach to the theory of fuzzy metric spaces which is based on the use of a t-norm, we proceed from a t-conorm in the definition of a revised fuzzy metric. Here, we restrict our study to the case of fuzzy metrics as they are defined by George-Veeramani, however, similar revision can be done also for some other approaches to the concept of a fuzzy metric.
A naïve way of looking at fuzzy sets
2016
In this study, we consider the concept of a predicate (P) in a universe of discourse X from a specific viewpoint, i.e., the informational viewpoint with respect to its linguistic use. Its meaning and its different types are considered, particularly by considering the predicates that are "measurable" and designate a "collective" (P) in X, which is not always a classical subset of X. We show that the collective P manifests itself in different "states" or fuzzy sets, where knowledge and representation depend on the available information regarding the use of the predicate P in X. We also analyze the linguistic concept of a "collective" where the fuzzy sets are nothing other than informational s…
Engineering multi-agent systems using feedback loops and holarchies
2016
This paper presents a methodological approach for the engineering of Multi-Agent Systems using feedback loops as a first class concept in order to identify organizations. Feedback loops are a way for modeling complex systems that expose emergent behavior by means of a cause-effect loop between two levels called micro and macro levels of the system. The proposed approach principles consist in defining an abstract feedback loop pattern and providing activities and guidelines in order to identify and refine possible candidates for feedback loops during the analysis phase of the Aspecs methodology. This approach is illustrated by using an example drawn from the smart grid field.
Prediction-Based Assembly Assistance System
2020
This paper presents the design of a prediction-based assembly assistance system for manual operations and the results obtained on the data collected from experiments of assembling a customizable product. We integrated into the proposed system a Markov predictor improved with a padding mechanism whose role is to recommend the next assembly step and to detect the worker’s errors. The predictor is trained with correct assembly patterns and tested with real assembly/manufacturing data. The proposed predictor improves the coverage and, thus, there is a significantly higher number of assembly steps which are correctly correlated with the real intentions of the workers.
Accurate keyframe selection and keypoint tracking for robust visual odometry
2016
This paper presents a novel stereo visual odometry (VO) framework based on structure from motion, where a robust keypoint tracking and matching is combined with an effective keyframe selection strategy. In order to track and find correct feature correspondences a robust loop chain matching scheme on two consecutive stereo pairs is introduced. Keyframe selection is based on the proportion of features with high temporal disparity. This criterion relies on the observation that the error in the pose estimation propagates from the uncertainty of 3D points—higher for distant points, that have low 2D motion. Comparative results based on three VO datasets show that the proposed solution is remarkab…
Real time UAV altitude, attitude and motion estimation from hybrid stereovision
2012
International audience; Knowledge of altitude, attitude and motion is essential for an Unmanned Aerial Vehicle during crit- ical maneuvers such as landing and take-off. In this paper we present a hybrid stereoscopic rig composed of a fisheye and a perspective camera for vision-based navigation. In contrast to classical stereoscopic systems based on feature matching, we propose methods which avoid matching between hybrid views. A plane-sweeping approach is proposed for estimating altitude and de- tecting the ground plane. Rotation and translation are then estimated by decoupling: the fisheye camera con- tributes to evaluating attitude, while the perspective camera contributes to estimating t…
Forecasting portfolio returns using weighted fuzzy time series methods
2016
We propose using weighted fuzzy time series (FTS) methods to forecast the future performance of returns on portfolios. We model the uncertain parameters of the fuzzy portfolio selection models using a possibilistic interval-valued mean approach, and approximate the uncertain future return on a given portfolio by means of a trapezoidal fuzzy number. Introducing some modifications into the classical models of fuzzy time series, based on weighted operators, enables us to generate trapezoidal numbers as forecasts of the future performance of the portfolio returns. This fuzzy forecast makes it possible to approximate both the expected return and the risk of the investment through the value and a…