Search results for " Informatica"

showing 10 items of 978 documents

Quasi Conjunction and Inclusion Relation in Probabilistic Default Reasoning

2011

We study the quasi conjunction and the Goodman & Nguyen inclusion relation for conditional events, in the setting of probabilistic default reasoning under coherence. We deepen two recent results given in (Gilio and Sanfilippo, 2010): the first result concerns p-entailment from a family F of conditional events to the quasi conjunction C(S) associated with each nonempty subset S of F; the second result, among other aspects, analyzes the equivalence between p-entailment from F and p-entailment from C(S), where S is some nonempty subset of F. We also characterize p-entailment by some alternative theorems. Finally, we deepen the connections between p-entailment and the Goodman & Nguyen inclusion…

Discrete mathematicsClass (set theory)goodman & nguyen inclusion relationSettore MAT/06 - Probabilita' E Statistica MatematicaSettore INF/01 - Informaticap-entailment.; quasi conjunction; goodman & nguyen inclusion relation; qand rule; coherence; probabilistic default reasoning; p-entailmentProbabilistic logicqand ruleprobabilistic default reasoningConsistency (knowledge bases)Coherence (philosophical gambling strategy)p-entailmentCoherence probabilistic default reasoning quasi conjunction Goodman & Nguyen inclusion relation QAND rule p-entailment.coherenceConjunction (grammar)Default reasoningquasi conjunctionGreatest elementAlgorithmEquivalence (measure theory)Mathematics
researchProduct

On lazy representations and Sturmian graphs

2011

In this paper we establish a strong relationship between the set of lazy representations and the set of paths in a Sturmian graph associated with a real number α. We prove that for any non-negative integer i the unique path weighted i in the Sturmian graph associated with α represents the lazy representation of i in the Ostrowski numeration system associated with α. Moreover, we provide several properties of the representations of the natural integers in this numeration system.

Discrete mathematicsCombinatoricsOstrowski numerationIntegernumeration systems Sturmian graphs continued fractionsSettore INF/01 - InformaticaGraphMathematicsReal number
researchProduct

On the regularity of circular splicing languages : A survey and new developments

2009

Circular splicing has been introduced to model a specific recombinant behaviour of circular DNA, continuing the investigation initiated with linear splicing. In this paper we focus on the relationship between regular circular languages and languages generated by finite circular splicing systems. We survey the known results towards a characterization of the intersection between these two classes and provide new contributions on the open problem of finding this characterization. First, we exhibit a non-regular circular language generated by a circular simple system thus disproving a known result in this area. Then we give new results related to a restrictive class of circular splicing systems…

Discrete mathematicsComputer scienceOpen problemINF/01 - INFORMATICAGraph theoryCircular wordMolecular computingComputer Science ApplicationsGraph theoryAutomata theory Circular words Formal languages Graph theory Molecular computing Splicing systemsIntersectionFormal languageTheory of computationGraph (abstract data type)CographFormal languageSplicing systemComplement (set theory)Automata theory
researchProduct

Recognizable picture languages and polyominoes

2007

We consider the problem of recognizability of some classes of polyominoes in the theory of picture languages. In particular we focus our attention oil the problem posed by Matz of finding a non-recognizable picture language for which his technique for proving the non-recognizability of picture languages fails. We face the problem by studying the family of L-convex polyominoes and some closed families that are similar to the recognizable family of all polyominoes but result to be non-recognizable. Furthermore we prove that the family of L-convex polyominoes satisfies the necessary condition given by Matz for the recognizability and we conjecture that the family of L-convex polyominoes is non…

Discrete mathematicsConjecturePolyominoSettore INF/01 - InformaticaPolyominoesFace (sociological concept)Picture languageFocus (linguistics)Mathematics
researchProduct

The Alternating BWT: an algorithmic perspective

2020

Abstract The Burrows-Wheeler Transform (BWT) is a word transformation introduced in 1994 for Data Compression. It has become a fundamental tool for designing self-indexing data structures, with important applications in several areas in science and engineering. The Alternating Burrows-Wheeler Transform (ABWT) is another transformation recently introduced in Gessel et al. (2012) [21] and studied in the field of Combinatorics on Words. It is analogous to the BWT, except that it uses an alternating lexicographical order instead of the usual one. Building on results in Giancarlo et al. (2018) [23] , where we have shown that BWT and ABWT are part of a larger class of reversible transformations, …

Discrete mathematicsFOS: Computer and information sciencesSettore INF/01 - InformaticaGeneral Computer ScienceBasis (linear algebra)Computer scienceAlternating Burrows-Wheeler TransformGalois wordRank-invertibilityField (mathematics)Data structureTheoretical Computer ScienceTransformation (function)Difference cover algorithmComputer Science - Data Structures and AlgorithmsData Structures and Algorithms (cs.DS)Time complexityAlternating Burrows-Wheeler Transform; Difference cover algorithm; Galois word; Rank-invertibilityWord (computer architecture)Data compression
researchProduct

Periodicity and repetitions in parameterized strings

2008

AbstractOne of the most beautiful and useful notions in the Mathematical Theory of Strings is that of a Period, i.e., an initial piece of a given string that can generate that string by repeating itself at regular intervals. Periods have an elegant mathematical structure and a wealth of applications [F. Mignosi and A. Restivo, Periodicity, Algebraic Combinatorics on Words, in: M. Lothaire (Ed.), Cambridge University Press, Cambridge, pp. 237–274, 2002]. At the hearth of their theory, there are two Periodicity Lemmas: one due to Lyndon and Schutzenberger [The equation aM=bNcP in a free group, Michigan Math. J. 9 (1962) 289–298], referred to as the Weak Version, and the other due to Fine and …

Discrete mathematicsLemma (mathematics)Algebraic combinatoricsCombinatorics on wordsSettore INF/01 - InformaticaApplied MathematicsParameterized complexityParameterized stringsString searching algorithmString (physics)Periodic functionCombinatoricsCombinatorics on wordsDiscrete Mathematics and CombinatoricsString periodicityUniquenessCombinatorics on Words AlgorithmsMathematics
researchProduct

Hopcroft’s Algorithm and Cyclic Automata

2008

Minimization of deterministic finite automata is a largely studied problem of the Theory of Automata and Formal Languages. It consists in finding the unique (up to isomorphism) minimal deterministic automaton recognizing a set of words. The first approaches to this topic can be traced back to the 1950’s with the works of Huffman and Moore (cf. [12,15]). Over the years several methods to solve this problem have been proposed but the most efficient algorithm in the worst case was given by Hopcroft in [11]. Such an algorithm computes in O(n log n) the minimal automaton equivalent to a given automaton with n states. The Hopcroft’s algorithm has been widely studied, described and implemented by …

Discrete mathematicsNested wordSettore INF/01 - InformaticaComputer scienceTimed automatonSturmian wordsω-automatonNonlinear Sciences::Cellular Automata and Lattice GasesHopcroft's algorithmCombinatoricsDFA minimizationDeterministic automatonAutomata theoryQuantum finite automataNondeterministic finite automatonAlgorithmComputer Science::Formal Languages and Automata Theory
researchProduct

Hopcroft's algorithm and tree-like automata

2011

Minimizing a deterministic finite automata (DFA) is a very important problem in theory of automata and formal languages. Hopcroft's algorithm represents the fastest known solution to the such a problem. In this paper we analyze the behavior of this algorithm on a family binary automata, called tree-like automata, associated to binary labeled trees constructed by words. We prove that all the executions of the algorithm on tree-like automata associated to trees, constructed by standard words, have running time with the same asymptotic growth rate. In particular, we provide a lower and upper bound for the running time of the algorithm expressed in terms of combinatorial properties of the trees…

Discrete mathematicsNested wordSettore INF/01 - InformaticaGeneral MathematicsAutomata minimizationω-automatonHopcroft's algorithmComputer Science ApplicationsCombinatoricsDeterministic finite automatonDFA minimizationDeterministic automatonContinuous spatial automatonQuantum finite automataAutomata theoryword treesAlgorithmComputer Science::Formal Languages and Automata TheorySoftwareMathematics
researchProduct

On computing the degree of convexity of polyominoes

2015

In this paper we present an algorithm which has as input a convex polyomino $P$ and computes its degree of convexity, defined as the smallest integer $k$ such that any two cells of $P$ can be joined by a monotone path inside $P$ with at most $k$ changes of direction. The algorithm uses space $O(m + n)$ to represent a polyomino $P$ with $n$ rows and $m$ columns, and has a running time $O(min(m; r k))$, where $r$ is the number of corners of $P$. Moreover, the algorithm leads naturally to a decomposition of $P$ into simpler polyominoes.

Discrete mathematicsPolyominoDegree (graph theory)Settore INF/01 - InformaticaApplied MathematicsRegular polygonConvexityTheoretical Computer ScienceCombinatoricsMonotone polygonIntegerComputational Theory and MathematicsPath (graph theory)Discrete Mathematics and CombinatoricsGeometry and TopologyRowMathematics
researchProduct

On the size of transducers for bidirectional decoding of prefix codes

2012

In a previous paper [L. Giambruno and S. Mantaci, Theoret. Comput. Sci. 411 (2010) 1785–1792] a bideterministic transducer is defined for the bidirectional deciphering of words by the method introduced by Girod [ IEEE Commun. Lett. 3 (1999) 245–247]. Such a method is defined using prefix codes. Moreover a coding method, inspired by the Girod’s one, is introduced, and a transducer that allows both right-to-left and left-to-right decoding by this method is defined. It is proved also that this transducer is minimal. Here we consider the number of states of such a transducer, related to some features of the considered prefix code X . We find some bounds of such a number of states in relation wi…

Discrete mathematicsPrefix codeBlock codeSettore INF/01 - InformaticaGeneral MathematicsConcatenated error correction codeprefix codeList decodingSerial concatenated convolutional codesSequential decodingLinear codeComputer Science ApplicationsPrefixbilateral decodingVariable length codetransducersAlgorithmComputer Science::Formal Languages and Automata TheorySoftwareMathematics
researchProduct