Search results for " Informatica"

showing 10 items of 978 documents

A Generalization of Girod’s Bidirectional Decoding Method to Codes with a Finite Deciphering Delay

2012

In this paper we generalize an encoding method due to Girod (cf. [6]) using prefix codes, that allows a bidirectional decoding of the encoded messages. In particular we generalize it to any finite alphabet A, to any operation defined on A, to any code with finite deciphering delay and to any key x ∈ A+ , on a length depending on the deciphering delay. We moreover define, as in [4], a deterministic transducer for such generalized method. We prove that, fixed a code X ∈ A* with finite deciphering delay and a key x ∈ A *, the transducers associated to different operations are isomorphic as unlabelled graphs. We also prove that, for a fixed code X with finite deciphering delay, transducers asso…

Discrete mathematicsPrefix codeStrongly connected componentSettore INF/01 - InformaticaGeneralization020206 networking & telecommunications0102 computer and information sciences02 engineering and technology01 natural sciencesPrefix010201 computation theory & mathematicsEncoding (memory)0202 electrical engineering electronic engineering information engineeringCode (cryptography)AlphabetGirod's encoding codes finite deciphering delayDecoding methodsMathematics
researchProduct

A note on Sturmian words

2012

International audience; We describe an algorithm which, given a factor of a Sturmian word, computes the next factor of the same length in the lexicographic order in linear time. It is based on a combinatorial property of Sturmian words which is related with the Burrows-Wheeler transformation.

Discrete mathematicsProperty (philosophy)General Computer ScienceSettore INF/01 - Informatica010102 general mathematics[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS]Sturmian word0102 computer and information sciencesSturmian wordsLexicographical order01 natural sciencesTheoretical Computer ScienceCombinatoricsTransformation (function)010201 computation theory & mathematicsFactor (programming language)combinatorics0101 mathematicscomputerTime complexitycomputer.programming_languageMathematics
researchProduct

On the longest common factor problem

2008

The Longest Common Factor (LCF) of a set of strings is a well studied problem having a wide range of applications in Bioinformatics: from microarrays to DNA sequences analysis. This problem has been solved by Hui (2000) who uses a famous constant-time solution to the Lowest Common Ancestor (LCA) problem in trees coupled with use of suffix trees. A data structure for the LCA problem, although linear in space and construction time, introduces a multiplicative constant in both space and time that reduces the range of applications in many biological applications. In this article we present a new method for solving the LCF problem using the suffix tree structure with an auxiliary array that take…

Discrete mathematicsSettore INF/01 - InformaticaSuffix tree[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS]Generalized suffix treeDAWGsuffix tree[INFO.INFO-DS] Computer Science [cs]/Data Structures and Algorithms [cs.DS]Data structureLongest common substring problemlaw.inventionCombinatoricsSet (abstract data type)Range (mathematics)lawLongest Common Factor ProblemSuffixLowest common ancestorMathematics
researchProduct

Conditional Random Quantities and Iterated Conditioning in the Setting of Coherence

2013

We consider conditional random quantities (c.r.q.’s) in the setting of coherence. Given a numerical r.q. X and a non impossible event H, based on betting scheme we represent the c.r.q. X|H as the unconditional r.q. XH + μH c , where μ is the prevision assessed for X|H. We develop some elements for an algebra of c.r.q.’s, by giving a condition under which two c.r.q.’s X|H and Y|K coincide. We show that X|HK coincides with a suitable c.r.q. Y|K and we apply this representation to Bayesian updating of probabilities, by also deepening some aspects of Bayes’ formula. Then, we introduce a notion of iterated c.r.q. (X|H)|K, by analyzing its relationship with X|HK. Our notion of iterated conditiona…

Discrete mathematicsSettore MAT/06 - Probabilita' E Statistica MatematicaSettore INF/01 - Informaticaconditional random quantitiesCoherence (statistics)Bayesian inferencebayesian updatingcoherenceCombinatoricsconditional previsionsBayes' theoremIterated functionbayesian updating; conditional random quantities; betting scheme; conditional previsions; coherence; iterated conditioning; iterated conditioning.Coherence betting scheme conditional random quantities conditional previsions Bayesian updating iterated conditioning.Scheme (mathematics)iterated conditioningConditioningRepresentation (mathematics)betting schemeEvent (probability theory)Mathematics
researchProduct

Nondeterministic Moore automata and Brzozowski's minimization algorithm

2012

AbstractMoore automata represent a model that has many applications. In this paper we define a notion of coherent nondeterministic Moore automaton (NMA) and show that such a model has the same computational power of the classical deterministic Moore automaton. We consider also the problem of constructing the minimal deterministic Moore automaton equivalent to a given NMA. We propose an algorithm that is a variant of Brzozowski’s minimization algorithm in the sense that it is essentially structured as reverse operation and subset construction performed twice. Moreover, we explore more general classes of NMA and analyze the applicability of the algorithm. For some of such classes the algorith…

Discrete mathematicsTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESGeneral Computer ScienceBrzozowski’s minimization algorithmSettore INF/01 - InformaticaPowerset constructionAutomata minimizationBüchi automatonNonlinear Sciences::Cellular Automata and Lattice GasesTheoretical Computer ScienceNondeterministic algorithmDeterministic finite automatonTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESDFA minimizationDeterministic automatonTwo-way deterministic finite automatonNondeterministic finite automatonBrzozowski's minimization algorithmComputer Science::Formal Languages and Automata TheoryComputer Science(all)MathematicsNondeterministic Moore automata
researchProduct

Extremal minimality conditions on automata

2012

AbstractIn this paper we investigate the minimality problem of DFAs by varying the set of final states. In other words, we are interested on how the choice of the final states can affect the minimality of the automata. The state-pair graph is a useful tool to investigate such a problem. The choice of a set of final states for the automaton A defines a coloring of the closed components of the state-pair graph and the minimality of A corresponds to a property of these colored components. A particular attention is devoted to the analysis of some extremal cases such as, for example, the automata that are minimal for any choice of the subset of final states F from the state set Q of the automato…

Discrete mathematicsTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESNested wordSettore INF/01 - InformaticaGeneral Computer Sciencestate-pair graph of automataminimality automataTimed automatonω-automatonNonlinear Sciences::Cellular Automata and Lattice GasesTheoretical Computer ScienceMobile automatonCombinatoricsTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESDFA minimizationContinuous spatial automatonAutomata theoryQuantum finite automataComputer Science::Formal Languages and Automata TheoryComputer Science(all)MathematicsTheoretical Computer Science
researchProduct

A graph theoretic approach to automata minimality

2012

AbstractThe paper presents a graph-theoretic approach to test the minimality of a deterministic automaton. In particular, we focus on problems concerning the dependence of the minimality of an automaton on the choice of the set F of final states or on the cardinality of the set F. We introduce different minimality conditions of an automaton and show that such conditions can be characterized in graph-theoretic terms.

Discrete mathematicsTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESSettore INF/01 - InformaticaGeneral Computer Sciencegraph theoryContinuous automatonTimed automatonPushdown automatonBüchi automatonautomata minimalityNonlinear Sciences::Cellular Automata and Lattice GasesTheoretical Computer ScienceAutomatonCombinatoricsCardinalityDeterministic automatonTwo-way deterministic finite automatonComputer Science::Formal Languages and Automata TheoryMathematicsTheoretical Computer Science
researchProduct

Nondeterministic Moore Automata and Brzozowski’s Algorithm

2011

Moore automata represent a model that has many applications. In this paper we define a notion of coherent nondeterministic Moore automaton (NMA) and show that such a model has the same computational power of the classical deterministic Moore automaton. We consider also the problem of constructing the minimal deterministic Moore automaton equivalent to a given NMA. In this paper we propose an algorithm that is a variant of Brzozowski's algorithm in the sense that it is essentially structured as reverse operation and subset construction performed twice.

Discrete mathematicsTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESSettore INF/01 - InformaticaPowerset constructionBüchi automatonNonlinear Sciences::Cellular Automata and Lattice GasesNondeterministic algorithmTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESDeterministic finite automatonDFA minimizationDeterministic automatonTwo-way deterministic finite automatonMoore automata minimization Brzozowski'algorithmNondeterministic finite automatonAlgorithmComputer Science::Formal Languages and Automata TheoryMathematics
researchProduct

On Extremal Cases of Hopcroft’s Algorithm

2009

In this paper we consider the problem of minimization of deterministic finite automata (DFA) with reference to Hopcroft’s algorithm. Hopcroft’s algorithm has several degrees of freedom, so there can exist different sequences of refinements of the set of the states that lead to the final partition. We find an infinite family of binary automata for which such a process is unique. Some recent papers (cf. [3,7,1]) have been devoted to find families of automata for which Hopcroft’s algorithm has its worst execution time. They are unary automata associated to circular words. However, automata minimization can be achieved also in linear time when the alphabet has only one letter (cf. [14]), so in …

Discrete mathematicsTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESSettore INF/01 - InformaticaUnary operationBinary numberHopcroft's algorithmNonlinear Sciences::Cellular Automata and Lattice GasesAutomatonCombinatoricsSet (abstract data type)TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESDeterministic finite automatonDFA minimizationMinificationAlgorithmTime complexityComputer Science::Formal Languages and Automata TheoryMathematics
researchProduct

Transitive Reasoning with Imprecise Probabilities

2015

We study probabilistically informative (weak) versions of transitivity by using suitable definitions of defaults and negated defaults in the setting of coherence and imprecise probabilities. We represent \(\text{ p-consistent }\) sequences of defaults and/or negated defaults by g-coherent imprecise probability assessments on the respective sequences of conditional events. Finally, we present the coherent probability propagation rules for Weak Transitivity and the validity of selected inference patterns by proving p-entailment of the associated knowledge bases.

Discrete mathematicsTransitive relationSettore MAT/06 - Probabilita' E Statistica MatematicaSettore INF/01 - Informaticabusiness.industryProbabilistic logicSyllogismInferenceCoherence (philosophical gambling strategy)Settore M-FIL/02 - Logica E Filosofia Della ScienzaComputer Science::Artificial IntelligenceImprecise probabilityCoherence default imprecise probability knowledge base p-consistency p-entailment reasoning syllogism weak transitivityProbability propagationKnowledge basebusinessMathematics
researchProduct