Search results for " Instrumentation."

showing 10 items of 712 documents

Development and Study of a Micromegas Pad-Detector for High Rate Applications

2015

In this paper, the design and the performance of two prototype detectors based on Micromegas technology with a pad readout geometry is discussed. In addition, two alternative implementations of a spark-resistent protection layer on top of the readout pads have been tested to optimize the charge-up behavior of the detector under high rates. The prototype detectors consist of 500 pads with a size of 5x4 mm, each connected to one independent readout channel, and cover an active area of 10x10 cm. The design of these prototypes and its associated readout infrastructure was developed in such a way that it can be easily adapted for large-size detector concepts.

High ratePhysicsNuclear and High Energy PhysicsPhysics - Instrumentation and Detectorsbusiness.industryPhysics::Instrumentation and DetectorsDetectorFOS: Physical sciencesMicroMegas detectorInstrumentation and Detectors (physics.ins-det)Gaseous detectorsProtection layerDevelopment (differential geometry)Resistive couplingbusinessInstrumentationComputer hardwareCommunication channel
researchProduct

Anode current saturation of ALD-coated Planacon MCP-PMTs

2018

We have measured and compared the characteristics of ALD-coated Planacon MCP-PMTs (XP85112/A1-Q-L) with their non-ALD counterparts (XP85012/A1-Q). While the later show excellent performance, the ALD-coated sensors have surprisingly low current saturation levels (~two orders of magnitude lower than expected) and extremely high gain recovery time (more than 7 orders of magnitude higher than expected). We suspect that these problems might be caused by the unexpected side-effects of the ALD process. To make a definite conclusion, more samples need to be tested, preferably from different production runs. If our observation were confirmed, it would mean a serious technological setback for ALD-coa…

High-gain antennaMaterials sciencePhysics - Instrumentation and Detectors010308 nuclear & particles physicsbusiness.industryFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)01 natural sciencesAnode0103 physical sciencesOptoelectronics010306 general physicsbusinessInstrumentationSaturation (magnetic)Mathematical Physics
researchProduct

Indirect dark matter search with the ANTARES neutrino telescope

2012

Using the data recorded by the ANTARES neutrino telescope during 2007 and 2008, a search for high energy neutrinos coming from the direction of the Sun has been performed. The neutrino selection criteria have been chosen so as to maximize the rejection of the atmospheric background with respect to possible signals produced by the self-annihilation of weakly interactive massive particles accumulated in the centre of the Sun. After data unblinding, the number of neutrinos observed was found to be compatible with background expectations. The results obtained were compared to the fluxes predicted by the Constrained Minimal Supersymmetric Standard Model, and 90% upper limits for this model were …

HistoryParticle physicsHigh energyAstrophysics::High Energy Astrophysical PhenomenaScalar (mathematics)Neutrino telescopeDark matterCompact dimensionFOS: Physical sciencesScale (descriptive set theory)EducationStandard ModelHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Direct searchInstrumentation and Methods for Astrophysics (astro-ph.IM)PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)MuonHigh Energy Physics::PhenomenologyGauginoAstrophysics::Instrumentation and Methods for AstrophysicsComputer Science ApplicationsHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsMinimal Supersymmetric Standard Model
researchProduct

Results from the Project 8 phase-1 cyclotron radiation emission spectroscopy detector

2017

The Project 8 collaboration seeks to measure the absolute neutrino mass scale by means of precision spectroscopy of the beta decay of tritium. Our technique, cyclotron radiation emission spectroscopy, measures the frequency of the radiation emitted by electrons produced by decays in an ambient magnetic field. Because the cyclotron frequency is inversely proportional to the electron's Lorentz factor, this is also a measurement of the electron's energy. In order to demonstrate the viability of this technique, we have assembled and successfully operated a prototype system, which uses a rectangular waveguide to collect the cyclotron radiation from internal conversion electrons emitted from a ga…

HistoryPhysics - Instrumentation and DetectorsCyclotronFOS: Physical sciencesElectronRadiationEducationlaw.inventionHigh Energy Physics - Experimentsymbols.namesakeHigh Energy Physics - Experiment (hep-ex)Internal conversionlawddc:530Cyclotron radiationEmission spectrumNuclear Experiment (nucl-ex)Nuclear ExperimentPhysicsPhysicsInstrumentation and Detectors (physics.ins-det)Computer Science ApplicationsComputational physicsLorentz factorsymbolsNeutrino
researchProduct

Studies on mineral dust using airborne lidar, ground-based remote sensing, and in situ instrumentation

2018

In August 2015, the AER-D campaign made use of the FAAM research aircraft based in Cape Verde, and targeted mineral dust. First results will be shown here. The campaign had multiple objectives: (1) lidar dust mapping for the validation of satellite and model products; (2) validation of sunphotometer remote sensing with airborne measurements; (3) coordinated measurements with the CATS lidar on the ISS; (4) radiative closure studies; and (5) the validation of a new model of dustsonde.

In situ instrumentationLidar010504 meteorology & atmospheric sciencesRemote sensing (archaeology)PhysicsQC1-999Creative commonsMineral dust010502 geochemistry & geophysics01 natural sciencesLicense0105 earth and related environmental sciencesRemote sensingEPJ Web of Conferences
researchProduct

The second data release of the INT Photometric Hα Survey of the Northern Galactic Plane (IPHAS DR2)

2014

The INT/WFC Photometric H-Alpha Survey of the Northern Galactic Plane (IPHAS) is a 1800 square degrees imaging survey covering Galactic latitudes |b| < 5 deg and longitudes l = 30 to 215 deg in the r, i and H-alpha filters using the Wide Field Camera (WFC) on the 2.5-metre Isaac Newton Telescope (INT) in La Palma. We present the first quality-controlled and globally-calibrated source catalogue derived from the survey, providing single-epoch photometry for 219 million unique sources across 92% of the footprint. The observations were carried out between 2003 and 2012 at a median seeing of 1.1 arcsec (sampled at 0.33 arcsec/pixel) and to a mean 5\sigma-depth of 21.2 (r), 20.0 (i) and 20.3 (H-a…

InfraredAstronomyFOS: Physical sciencesAstrophysics01 natural scienceslaw.inventionRoot mean squarePhotometry (optics)surveyslaw0103 physical sciencesQB460stellar content [Galaxy]010303 astronomy & astrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Solar and Stellar Astrophysics (astro-ph.SR)cataloguesPhysics010308 nuclear & particles physicsNewtonian telescopeVegaAstronomyAstronomy and AstrophysicsBeGalactic planeemission-line [stars]Astrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceComputingMethodologies_DOCUMENTANDTEXTPROCESSINGAstrophysics - Instrumentation and Methods for AstrophysicsData releaseData reduction
researchProduct

Precision luminosity measurements at LHCb

2014

Measuring cross-sections at the LHC requires the luminosity to be determined accurately at each centre-of-mass energy $\sqrt{s}$. In this paper results are reported from the luminosity calibrations carried out at the LHC interaction point 8 with the LHCb detector for $\sqrt{s}$ = 2.76, 7 and 8 TeV (proton-proton collisions) and for $\sqrt{s_{NN}}$ = 5 TeV (proton-lead collisions). Both the "van der Meer scan" and "beam-gas imaging" luminosity calibration methods were employed. It is observed that the beam density profile cannot always be described by a function that is factorizable in the two transverse coordinates. The introduction of a two-dimensional description of the beams improves sig…

Instrumentation for particle accelerators and storage rings - high energy (linear acceleratorsHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)cluster finding[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment06.20.fbInstrumentationMathematical PhysicsQCPhysicsLuminosity (scattering theory)Large Hadron ColliderPattern recognition cluster finding calibration and fitting methodssynchrotrons)DetectorPattern recognition cluster finding calibration and fitting methodsComputer interfacecalibration and fitting methodsFísica nuclearTracking and position-sensitive detectorLHCParticle Physics - ExperimentParticle physics29.40.GxPattern recognition cluster finding calibration and fitting methods; Instrumentation for particle accelerators and storage rings - high energy (linear accelerators synchrotrons)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsLHCb - Abteilung HofmannPattern recognition cluster finding calibration and fitting methodInstrumentation for particle accelerators and storage rings - high energy (linear accelerators synchrotrons)NOConsistency (statistics)Pattern recognitionCalibrationSDG 7 - Affordable and Clean EnergyInstrumentation for particle accelerators and storage rings - high energy (linear accelerators synchrotrons)/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyInteraction pointStandards and calibrationFunction (mathematics)29.50.+vLHCbInstrumentation for particle accelerators and storage rings - high energy (linear accelerators synchrotrons); Pattern recognition cluster finding calibration and fitting methods; Instrumentation; Mathematical PhysicsTEVPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentInstrumentation for particle accelerators and storage rings - high energy (linear accelerators synchrotrons); Pattern recognition cluster finding calibration and fitting methodsEnergy (signal processing)
researchProduct

The THESEUS space mission concept: science case, design and expected performances

2018

THESEUS is a space mission concept aimed at exploiting Gamma-Ray Bursts for investigating the early Universe and at providing a substantial advancement of multi-messenger and time-domain astrophysics. These goals will be achieved through a unique combination of instruments allowing GRB and X-ray transient detection over a broad field of view (more than 1sr) with 0.5¿1 arcmin localization, an energy band extending from several MeV down to 0.3¿keV and high sensitivity to transient sources in the soft X-ray domain, as well as on-board prompt (few minutes) follow-up with a 0.7¿m class IR telescope with both imaging and spectroscopic capabilities. THESEUS will be perfectly suited for addressing …

IonizationAtmospheric Sciencecosmological modelCherenkov Telescope Array[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]AstronomyDark ageMASSIVE SINGLE STARSStar formation rates Gamma ray01 natural sciencesCosmology: observationlocalizationlaw.inventionAstrophysicEinstein Telescopeobservational cosmologylawObservational cosmologyRe-ionizationCosmology: observations; Dark ages; First stars; Gamma-ray: bursts; Re-ionizationLIGOobservations [Cosmology]Telescope010303 astronomy & astrophysicsHigh sensitivityHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsMulti-wavelengthenergy: highsezelegamma-ray burstsCosmology: observationsCosmology: observations; Dark ages; First stars; Gamma-ray: bursts; Re-ionization; Aerospace Engineering; Space and Planetary ScienceAstrophysics::Instrumentation and Methods for Astrophysicsimagingstar: formationburst [Gamma-ray]observatoryGeophysicsDark agesX rays Cosmology: observationAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenasignatureStarTIDAL DISRUPTIONGamma-ray: burstAstrophysics::High Energy Astrophysical PhenomenaSIMILAR-TO 6Socio-culturaleFOS: Physical sciencesAerospace EngineeringGamma-ray: burstsobservation [Cosmology]galaxy: luminosityX-ray astronomy: instrumentation7 CANDIDATE GALAXIESAstrophysics::Cosmology and Extragalactic Astrophysicsgamma ray: burst114 Physical sciencesSettore FIS/03 - Fisica della MateriaTelescopeX-raybursts [Gamma-ray]FIS/05 - ASTRONOMIA E ASTROFISICASettore FIS/05 - Astronomia e AstrofisicaFirst star0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]KAGRAInstrumentation and Methods for Astrophysics (astro-ph.IM)Astrophysics::Galaxy AstrophysicsFirst starsLIGHT CURVESEinstein Telescope010308 nuclear & particles physicsGravitational wavegravitational radiationAstronomyAstronomy and Astrophysics115 Astronomy Space scienceCherenkov Telescope ArrayredshiftsensitivityRedshiftNEUTRON-STAR MERGERmessengerVIRGOelectromagneticLUMINOSITY FUNCTIONSpace and Planetary ScienceBLACK-HOLEGeneral Earth and Planetary SciencesGamma-ray burst[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Inducing Strong Non-Linearities in a Phonon Trapping Quartz Bulk Acoustic Wave Resonator Coupled to a Superconducting Quantum Interference Device

2018

International audience; A quartz Bulk Acoustic Wave resonator is designed to coherently trap phonons in such a way that they are well confined and immune to suspension losses so they exhibit extremely high acoustic Q-factors at low temperature, with Q × f products of order 10¹⁸ Hz. In this work we couple such a resonator to a Superconducting Quantum Interference Device (SQUID) amplifier and investigate effects in the strong signal regime. Both parallel and series connection topologies of the system are investigated. The study reveals significant non-Duffing response that is associated with the nonlinear characteristics of Josephson junctions. The nonlinearity provides quasi-periodic structu…

Josephson effect[SPI.OTHER]Engineering Sciences [physics]/OtherPhysics - Instrumentation and DetectorsPhononphonon trappingFOS: Physical sciences02 engineering and technologySQUID01 natural sciencesSignallcsh:Technologylaw.inventionlcsh:ChemistryResonatorlaw0103 physical sciencesnon-linear couplingMesoscale and Nanoscale Physics (cond-mat.mes-hall)low noise oscillatorGeneral Materials Science010306 general physicsInstrumentationlcsh:QH301-705.5Fluid Flow and Transfer ProcessesPhysicsCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale Physicslcsh:TProcess Chemistry and TechnologyAmplifierGeneral EngineeringInstrumentation and Detectors (physics.ins-det)021001 nanoscience & nanotechnologylcsh:QC1-999Computer Science ApplicationsSQUIDNonlinear systemlcsh:Biology (General)lcsh:QD1-999lcsh:TA1-2040BAW Resonator; SQUID; phonon trapping; low noise oscillator; non-linear couplingBAW Resonator0210 nano-technologylcsh:Engineering (General). Civil engineering (General)Crystal oscillatorlcsh:Physics
researchProduct

Deep sea tests of a prototype of the KM3NeT digital optical module

2014

SIRE(opens in a new window)|View at Publisher| Export | Download | Add to List | More... European Physical Journal C Volume 74, Issue 9, 1 September 2014, 8p Deep sea tests of a prototype of the KM3NeT digital optical module: KM3NeT Collaboration (Article) Adrián-Martínez, S.a, Ageron, M.b, Aharonian, F.c, Aiello, S.d, Albert, A.e, Ameli, F.f, Anassontzis, E.G.g, Anghinolfi, M.h, Anton, G.i, Anvar, S.j, Ardid, M.a, de Asmundis, R.k, Balasi, K.l, Band, H.m, Barbarino, G.kn, Barbarito, E.o, Barbato, F.kn, Baret, B.p, Baron, S.p, Belias, A.lq, Berbee, E.m, van den Berg, A.M.r, Berkien, A.m, Bertin, V.b, Beurthey, S.b, van Beveren, V.m, Beverini, N.st, Biagi, S.uv, Bianucci, S.t, Billault, M.b,…

KM3NeT; digital optical modulePhysics - Instrumentation and Detectors[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Physics and Astronomy (miscellaneous)TELESCOPEPhysics::Instrumentation and Detectorsdigital optical moduleFOS: Physical sciencesNeutrino Telescopesneutrino astrophysics; Cherenkov detector; Neutrino TelescopesKM3NeT; Cherenkov; UnderwaterDESIGNCherenkov[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Instrumentation and Methods for Astrophysics (astro-ph.IM)KM3NeTEngineering (miscellaneous)Astrophysics::Instrumentation and Methods for Astrophysicsneutrino telescopeDATA-ACQUISITIONInstrumentation and Detectors (physics.ins-det)READOUTneutrino astrophysics[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]NEUTRINOSUnderwaterAstrophysics - Instrumentation and Methods for AstrophysicsSYSTEMCherenkov detector
researchProduct