Search results for " Instrumentation."

showing 10 items of 712 documents

Cosmic ray composition and energy spectrum from 1–30 PeV using the 40-string configuration of IceTop and IceCube

2012

Astroparticle physics 42, 15 - 32 (2013). doi:10.1016/j.astropartphys.2012.11.003

Knee regionAstrophysicsTracking (particle physics)01 natural sciencesParticle identificationIceCubeTRACKINGWATERCherenkovNeutrino energyNEUTRINO TELESCOPEUltra-high-energy cosmic rayHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSEADetectorAstrophysics::Instrumentation and Methods for AstrophysicsLIGHTComposition; Cosmic rays; Energy spectrum; IceCube; IceTop; Knee regionddc:540IceTopPARTICLE IDENTIFICATIONAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsIceCube detectorCompositionAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayddc:500.2IceCube Neutrino ObservatorySEARCHESAccelerationcosmic raysdE/dx0103 physical sciences010306 general physicsDETECTORInstrumentation and Methods for Astrophysics (astro-ph.IM)Cherenkov radiationTruncated meanMuon energy010308 nuclear & particles physicsAstronomyAstronomy and Astrophysics540Physics and AstronomycompositionEnergy SpectrumTEVEnergy spectrum
researchProduct

MuPix and ATLASPix -- Architectures and Results

2020

High Voltage Monolithic Active Pixel Sensors (HV-MAPS) are based on a commercial High Voltage CMOS process and collect charge by drift inside a reversely biased diode. HV-MAPS represent a promising technology for future pixel tracking detectors. Two recent developments are presented. The MuPix has a continuous readout and is being developed for the Mu3e experiment whereas the ATLASPix is being developed for LHC applications with a triggered readout. Both variants have a fully monolithic design including state machines, clock circuitries and serial drivers. Several prototypes and design variants were characterised in the lab and in testbeam campaigns to measure efficiencies, noise, time reso…

Large Hadron ColliderFinite-state machinePhysics - Instrumentation and DetectorsPixelComputer scienceDetectorFOS: Physical sciencesHigh voltageInstrumentation and Detectors (physics.ins-det)Tracking (particle physics)7. Clean energyNoise (electronics)Electronic engineeringDetectors and Experimental Techniquesddc:620physics.ins-detEngineering & allied operationsDiode
researchProduct

Analysis of the XENON100 dark matter search data

2014

The XENON100 experiment, situated in the Laboratori Nazionali del Gran Sasso, aims at the direct detection of dark matter in the form of weakly interacting massive particles (WIMPs), based on their interactions with xenon nuclei in an ultra low background dual-phase time projection chamber. This paper describes the general methods developed for the analysis of the XENON100 data. These methods have been used in the 100.9 and 224.6 live days science runs from which results on spin-independent elastic, spin-dependent elastic and inelastic WIMP-nucleon cross-sections have already been reported.

Large Underground Xenon experimentPhysics - Instrumentation and DetectorsXenonWIMPPhysics::Instrumentation and DetectorsDirect detectionDark matterchemistry.chemical_elementFOS: Physical sciencesDarkSideWIMP Argon ProgrammeNuclear physicsXenonDark matterStatistical analysisNuclear ExperimentInstrumentation and Methods for Astrophysics (astro-ph.IM)PhysicsTime projection chamberAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and AstrophysicsInstrumentation and Detectors (physics.ins-det)WIMPschemistryWeakly interacting massive particlesDark matter; Direct detection; WIMPs; XenonAstrophysics - Instrumentation and Methods for AstrophysicsAstroparticle Physics
researchProduct

Distillation and stripping pilot plants for the JUNO neutrino detector: Design, operations and reliability

2019

Abstract This paper describes the design, construction principles and operations of the distillation and stripping pilot plants tested at the Daya Bay Neutrino Laboratory, with the perspective to adapt these processes, system cleanliness and leak-tightness standards to the final full scale plants to be used for the purification of the liquid scintillator of the JUNO neutrino detector. The main goal of these plants is to remove radio impurities from the liquid scintillator while increasing its optical attenuation length. Purification of liquid scintillator will be performed with a system combining alumina oxide, distillation, water extraction and steam (or N 2 gas) stripping. Such a combined…

Large-scale experimentNuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsLiquid scintillatorAttenuation length; LAB; Large-scale experiments; Light yield; Liquid scintillator; Nitrogen purging; Radiopurity; Scintillator transparency; Nuclear and High Energy Physics; Instrumentationscintillation counter: liquidMixing (process engineering)Full scaleFOS: Physical sciencesRadiopurityfabricationScintillator01 natural sciences7. Clean energyStripping (fiber)law.inventionNOlaw0103 physical sciencesthorium: admixtureAttenuation length; LAB; Large-scale experiments; Light yield; Liquid scintillator; Nitrogen purging; Radiopurity; Scintillator transparency[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsProcess engineeringDistillationInstrumentationbackground: radioactivityNuclear and High Energy PhysicPhysicsLABJUNOLarge-scale experiments010308 nuclear & particles physicsbusiness.industryuranium: admixtureSettore FIS/01 - Fisica SperimentaleAttenuation lengthInstrumentation and Detectors (physics.ins-det)Attenuation lengthNitrogen purgingNeutrino detectorScintillator transparencyNeutrinobusinessaluminum: oxygenLight yield
researchProduct

RAPTOR : A new collinear laser ionization spectroscopy and laser-radiofrequency double-resonance experiment at the IGISOL facility

2023

RAPTOR, Resonance ionization spectroscopy And Purification Traps for Optimized spectRoscopy, is a new collinear resonance ionization spectroscopy device constructed at the Ion Guide Isotope Separator On-Line (IGISOL) facility at the University of Jyv\"askyl\"a, Finland. By operating at beam energies of under 10 keV, the footprint of the experiment is reduced compared to more traditional collinear laser spectroscopy beamlines. In addition, RAPTOR is coupled to the JYFLTRAP Penning trap mass spectrometer, opening a window to laser-assisted nuclear-state selective purification, serving not only the mass measurement program, but also supporting post-trap decay spectroscopy experiments. Finally,…

Laser resonance ionizationPhysics - Instrumentation and Detectorscollinear laser spectroscopytutkimuslaitteetFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)nucl-exexotic nucleiNuclear Physics - ExperimentIGISOLlaser resonance ionizationNuclear Experiment (nucl-ex)Detectors and Experimental TechniquesydinfysiikkaNuclear Experimentphysics.ins-detExotic nuclei
researchProduct

The ATLAS Simulation Infrastructure

2010

52 páginas, 10 figuras, 18 tablas.-- This article is distributed under the terms of the Creative Commons Attribution Noncommercial License.-- et al. (The ATLAS Collaboration).

LibraryPhysics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Physics::Instrumentation and Detectorscomputer.software_genre01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Statistical physicsDetectors and Experimental TechniquesSimulaciónphysics.ins-detDetectors de radiació/dk/atira/pure/subjectarea/asjc/2200/2201PhysicsLarge Hadron ColliderAtlas (topology)4. EducationAcceleradors de partículesATLAS experimentDetectorSettore FIS/01 - Fisica SperimentaleInstrumentation and Detectors (physics.ins-det)ATLASGridSimulation softwareTile CalorimeterPhysical SciencesMontecarlo simulationLHCReal-time computingFOS: Physical sciencesATLAS experimentddc:500.2530High-Energy Physics0103 physical sciencesFysikddc:530[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]High Energy PhysicsMonte-Carlo010306 general physicsPartonEngineering (miscellaneous)Ciencias ExactasGEANT4EventATLAS detector010308 nuclear & particles physicsFísicaATLAS experiment; Montecarlo simulation; LHCGrid computingInterfacingHigh Energy Physics::Experiment/dk/atira/pure/subjectarea/asjc/3100/3101computer
researchProduct

The Design and Sensitivity of JUNO's scintillator radiopurity pre-detector OSIRIS

2021

The European physical journal / C 81(11), 973 (2021). doi:10.1140/epjc/s10052-021-09544-4

Liquid scintillatorPhysics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Physics::Instrumentation and Detectorsscintillation counter: liquidmeasurement methodsQC770-798Astrophysics01 natural sciencesthorium: nuclidedesign [detector]neutrinoRadioactive purityPhysicsLow energy neutrinoJUNOliquid [scintillation counter]biologySettore FIS/01 - Fisica SperimentaleDetectorInstrumentation and Detectors (physics.ins-det)3. Good healthQB460-466Physics::Space Physicsnuclide [uranium]FOS: Physical sciencesScintillatornuclide [thorium]530NONuclear physicsPE2_2uranium: nuclideNuclear and particle physics. Atomic energy. Radioactivity0103 physical sciencesddc:530Sensitivity (control systems)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsJUNO neutrino physics liquid scintillatorEngineering (miscellaneous)background: radioactivitydetector: designMeasurement method010308 nuclear & particles physicsradioactivity [background]biology.organism_classificationsensitivityHigh Energy Physics::ExperimentReactor neutrinoOsiris
researchProduct

Precise measurement of $2\nu\beta\beta$ decay of $^{100}$Mo with the CUPID-Mo detection technology

2020

We report the measurement of the two-neutrino double-beta ($2\nu\beta\beta$) decay of $^{100}$Mo to the ground state of $^{100}$Ru using lithium molybdate (\crystal) scintillating bolometers. The detectors were developed for the CUPID-Mo program and operated at the EDELWEISS-III low background facility in the Modane underground laboratory. From a total exposure of $42.235$ kg$\times$d, the half-life of $^{100}$Mo is determined to be $T_{1/2}^{2\nu}=[7.12^{+0.18}_{-0.14}\,\mathrm{(stat.)}\pm0.10\,\mathrm{(syst.)}]\times10^{18}$ years. This is the most accurate determination of the $2\nu\beta\beta$ half-life of $^{100}$Mo to date. We also confirm, with the statistical significance of $>3\sigm…

Lithium molybdatePhysics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Analytical chemistry[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]nucl-ex01 natural sciencesAtomicchemistry.chemical_compoundParticle and Plasma Physicstwo-neutrino double-beta decay scintillating bolometers0103 physical sciencesddc:530Beta (velocity)Nuclear[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNuclear ExperimentEngineering (miscellaneous)physics.ins-detS076H2NPhysicsQuantum Physics010308 nuclear & particles physicsPhysicsMolecularBeta decayNuclear & Particles Physics3. Good healthchemistrydouble beta decays bolometersUnderground laboratoryGround state
researchProduct

Characterization of a medium size Xe/TMA TPC instrumented with microbulk Micromegas, using low-energy gamma-rays

2014

NEXT-MM is a general-purpose high pressure (10 bar, $\sim25$ l active volume) Xenon-based TPC, read out in charge mode with an 8 cm $\times$8 cm-segmented 700 cm$^2$ plane (1152 ch) of the latest microbulk-Micromegas technology. It has been recently commissioned at University of Zaragoza as part of the R&D of the NEXT $0\nu\beta\beta$ experiment, although the experiment's first stage is currently being built based on a SiPM/PMT-readout concept relying on electroluminescence. Around 2 million events were collected during the last months, stemming from the low energy $\gamma$-rays emitted by a $^{241}$Am source when interacting with the Xenon gas ($\epsilon$ = 26, 30, 59.5 keV). The localized…

MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURASDrift velocityPhysics - Instrumentation and DetectorsXenonTime projection chambersDouble-beta decayNuclear physicschemistry.chemical_element01 natural sciencesMicrobulkNuclear physicsTECNOLOGIA ELECTRONICASilicon photomultiplierXenon0103 physical sciencesTrimethylamineDiffusion (business)010306 general physicsInstrumentationMathematical PhysicsDetectors de radiacióPhysicsAtmospheric pressure010308 nuclear & particles physicsGamma rayMicroMegas detectorHigh pressurechemistryTime projection chamberNuclear countersFísica nuclearMicromegasBar (unit)
researchProduct

Present Status and Future Perspectives of the NEXT Experiment

2014

Gómez Cadenas, Juan José et al.

MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURASNuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsArticle SubjectDouble beta decay experimentchemistry.chemical_elementFOS: Physical sciencesNEXT7. Clean energy01 natural sciencesSignalMathematical SciencesTECNOLOGIA ELECTRONICANuclear physicsXenonDouble beta decay0103 physical sciences010306 general physicsphysics.ins-detPhysicsTime projection chamberIsotope010308 nuclear & particles physicsDetectorInstrumentation and Detectors (physics.ins-det)lcsh:QC1-999chemistryPhysical SciencesFísica nuclearlcsh:PhysicsEnergy (signal processing)
researchProduct