Search results for " Instrumentation."
showing 10 items of 712 documents
Aalto-1, multi-payload CubeSat: Design, integration and launch
2021
The design, integration, testing, and launch of the first Finnish satellite Aalto-1 is briefly presented in this paper. Aalto-1, a three-unit CubeSat, launched into Sun-synchronous polar orbit at an altitude of approximately 500 km, is operational since June 2017. It carries three experimental payloads: Aalto Spectral Imager (AaSI), Radiation Monitor (RADMON), and Electrostatic Plasma Brake (EPB). AaSI is a hyperspectral imager in visible and near-infrared (NIR) wavelength bands, RADMON is an energetic particle detector and EPB is a de-orbiting technology demonstration payload. The platform was designed to accommodate multiple payloads while ensuring sufficient data, power, radio, mechanica…
Visual knowledge processing in computer-assisted radiology: A consultation system
1992
This paper presents Visual Heuristics, a consultation system for diagnosis based on thorax radiograph recording. Visual Heuristics uses both prototypical representations of physiological and pathological states and reasoning aimed to infer conclusions from pathological or physiological conditions, establishing correspondences between pathological or physiological states and semantic descriptions of images. Images are assembled with groups of descriptors that guide the recognition process, achieving the possibility of comparisons with real images on the basis of 'expected' images. The system may be employed to generate a dynamic atlas that does not contain proper images, but generates them.
The Athena X-ray Integral Field Unit (X-IFU)
2016
Event: SPIE Astronomical Telescopes + Instrumentation, 2016, Edinburgh, United Kingdom.
On the correction of conserved variables for numerical RMHD with staggered constrained transport
2015
Despite the success of the combination of conservative schemes and staggered constrained transport algorithms in the last fifteen years, the accurate description of highly magnetized, relativistic flows with strong shocks represents still a challenge in numerical RMHD. The present paper focusses in the accuracy and robustness of several correction algorithms for the conserved variables, which has become a crucial ingredient in the numerical simulation of problems where the magnetic pressure dominates over the thermal pressure by more than two orders of magnitude. Two versions of non-relativistic and fully relativistic corrections have been tested and compared using a magnetized cylindrical …
Effects of high pressure on the optical absorption spectrum of scintillating PbWO4 crystals
2006
The pressure behavior of the absorption edge of PbWO4 was studied up to 15.3 GPa. It red-shifts at -71 meV/GPa below 6.1 GPa, but at 6.3 GPa the band-gap collapses from 3.5 eV to 2.75 eV. From 6.3 GPa to 11.1 GPa, the absorption edge moves with a pressure coefficient of -98 meV/GPa, undergoing additional changes at 12.2 GPa. The results are discussed in terms of the electronic structure of PbWO4 which attribute the behavior of the band-gap to changes in the local atomic structure. The changes observed at 6.3 GPa and 12.2 GPa are attributed to phase transitions.
Nuclear quadrupole resonance spectroscopy with a femtotesla diamond magnetometer
2023
Sensitive Radio-Frequency (RF) magnetometers that can detect oscillating magnetic fields at the femtotesla level are needed for demanding applications such as Nuclear Quadrupole Resonance (NQR) spectroscopy. RF magnetometers based on Nitrogen-Vacancy (NV) centers in diamond have been predicted to offer femtotesla sensitivity, but published experiments have largely been limited to the picotesla level. Here, we demonstrate a femtotesla RF magnetometer based on an NV-doped diamond membrane inserted between two ferrite flux concentrators. The device operates in bias magnetic fields of 2-10 microtesla and provides a ~300-fold amplitude enhancement within the diamond for RF magnetic fields in the…
Studies of Relativistic Jets in Active Galactic Nuclei with SKA
2014
Relativistic jets in active galactic nuclei (AGN) are among the most powerful astrophysical objects discovered to date. Indeed, jetted AGN studies have been considered a prominent science case for SKA, and were included in several different chapters of the previous SKA Science Book (Carilli & Rawlings 2004). Most of the fundamental questions about the physics of relativistic jets still remain unanswered, and await high-sensitivity radio instruments such as SKA to solve them. These questions will be addressed specially through analysis of the massive data sets arising from the deep, all-sky surveys (both total and polarimetric flux) from SKA1. Wide-field very-long-baseline-interferometri…
Scheduling in Targeted Transient Surveys and a New Telescope for CHASE
2010
We present a method for scheduling observations in small field-of-view transient targeted surveys. The method is based on maximizing the probability of detection of transient events of a given type and age since occurrence; it requires knowledge of the time since the last observation for every observed field, the expected light curve of the event, and the expected rate of events in the fields where the search is performed. In order to test this scheduling strategy we use a modified version of the genetic scheduler developed for the telescope control system RTS2. In particular, we present example schedules designed for a future 50 cm telescope that will expand the capabilities of the CHASE s…
Dark matter results from 225 live days of XENON100 data
2012
We report on a search for particle dark matter with the XENON100 experiment, operated at the Laboratori Nazionali del Gran Sasso (LNGS) for 13 months during 2011 and 2012. XENON100 features an ultra-low electromagnetic background of (5.3 \pm 0.6) \times 10^-3 events (kg day keVee)^-1 in the energy region of interest. A blind analysis of 224.6 live days \times 34 kg exposure has yielded no evidence for dark matter interactions. The two candidate events observed in the pre-defined nuclear recoil energy range of 6.6-30.5 keVnr are consistent with the background expectation of (1.0 \pm 0.2) events. A Profile Likelihood analysis using a 6.6-43.3 keVnr energy range sets the most stringent limit o…
A low-mass dark matter search using ionization signals in XENON100
2016
We perform a low-mass dark matter search using an exposure of 30\,kg$\times$yr with the XENON100 detector. By dropping the requirement of a scintillation signal and using only the ionization signal to determine the interaction energy, we lowered the energy threshold for detection to 0.7\,keV for nuclear recoils. No dark matter detection can be claimed because a complete background model cannot be constructed without a primary scintillation signal. Instead, we compute an upper limit on the WIMP-nucleon scattering cross section under the assumption that every event passing our selection criteria could be a signal event. Using an energy interval from 0.7\,keV to 9.1\,keV, we derive a limit on …