Search results for " Knockout"

showing 10 items of 764 documents

Antibody-mediated blockade of JMJD6 interaction with collagen I exerts antifibrotic and antimetastatic activities

2017

JMJD6 is known to localize in the nucleus, exerting histone arginine demethylase and lysyl hydroxylase activities. A novel localization of JMJD6 in the extracellular matrix, resulting from its secretion as a soluble protein, was unveiled by a new anti-JMJD6 mAb called P4E11, which was developed to identify new targets in the stroma. Recombinant JMJD6 binds with collagen type I (Coll-I), and distinct JMJD6 peptides interfere with collagen fibrillogenesis, collagen-fibronectin interaction, and adhesion of human tumor cells to the collagen substrate. P4E11 and collagen binding to JMJD6 are mutually exclusive because the amino acid sequences of JMJD6 necessary for the interaction with Coll-I ar…

0301 basic medicineMonoclonal antibodyXenograft Model Antitumor AssayArginineLysyl hydroxylaseEnzyme-Linked Immunosorbent AssayReceptors Cell SurfacePlasma protein bindingBiochemistryCollagen Type IExtracellular matrix03 medical and health sciencesMiceFibrosisPeptide LibraryCell Line TumormedicineGeneticsAnimalsHumansOsteonectinCell NucleuMolecular BiologyCell NucleusMice KnockoutMice Inbred BALB CbiologyChemistryJmjC familyAnimalAntibodies MonoclonalFibrillogenesisExtracellular matrixmedicine.diseaseXenograft Model Antitumor AssaysImmunohistochemistryCell biologyIn vivo treatment030104 developmental biologybiology.proteinOsteonectinSignal transductionExtracellular matrix; In vivo treatment; JmjC family; Monoclonal antibody; Peptide library; Animals; Antibodies Monoclonal; Cell Line Tumor; Cell Nucleus; Collagen Type I; Enzyme-Linked Immunosorbent Assay; Extracellular Matrix; Humans; Immunohistochemistry; Mice; Mice Inbred BALB C; Mice Knockout; Osteonectin; Peptide Library; Protein Binding; Receptors Cell Surface; Signal Transduction; Xenograft Model Antitumor Assays; Biotechnology; Biochemistry; Molecular Biology; GeneticsHumanProtein BindingSignal TransductionBiotechnology
researchProduct

Discovery and characterization of two novel CB1 receptor splice variants with modified N-termini in mouse

2017

Numerous studies have been carried out in the mouse model, investigating the role of the CB1 cannabinoid receptor. However, mouse CB1 (mCB1) receptor differs from human CB1 (hCB1) receptor in 13 amino acid residues. Two splice variants, hCB1a and hCB1b, diverging in their amino-termini, have been reported to be unique for hCB1 and, via different signaling properties, contribute to CB1 receptor physiology and pathophysiology. We hypothesized that splice variants also exist for the mCB1 receptor and have different signaling properties. On murine hippocampal cDNA, we identified two novel mCB1 receptor splice variants generated by splicing of introns with 117 bp and 186 bp in the N-terminal dom…

0301 basic medicineMorpholinesRNA SplicingBiologyNaphthalenesBiochemistryHippocampusArticle5-HT7 receptor03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineReceptor Cannabinoid CB1Cannabinoid receptor type 2Enzyme-linked receptorAnimalsHumanssplice5-HT5A receptorRNA MessengerReceptorMice KnockoutNeuronsMolecular biologyBenzoxazinesRetinoic acid receptorAlternative Splicing030104 developmental biologyHEK293 CellsInterleukin-21 receptor030217 neurology & neurosurgeryEndocannabinoidsSignal Transduction
researchProduct

The fibronectin synergy site re-enforces cell adhesion and mediates a crosstalk between integrin classes

2017

Fibronectin (FN), a major extracellular matrix component, enables integrin-mediated cell adhesion via binding of α5β1, αIIbβ3 and αv-class integrins to an RGD-motif. An additional linkage for α5 and αIIb is the synergy site located in close proximity to the RGD motif. We report that mice with a dysfunctional FN-synergy motif (Fn1syn/syn) suffer from surprisingly mild platelet adhesion and bleeding defects due to delayed thrombus formation after vessel injury. Additional loss of β3 integrins dramatically aggravates the bleedings and severely compromises smooth muscle cell coverage of the vasculature leading to embryonic lethality. Cell-based studies revealed that the synergy site is dispensa…

0301 basic medicineMouseQH301-705.5extracellular matrixScienceExtracellular matrix componentIntegrinHemorrhageGeneral Biochemistry Genetics and Molecular BiologyExtracellular matrixMice03 medical and health sciencesfibronectinAnimalsBiology (General)Cell adhesionRGD motifMice KnockoutGeneral Immunology and MicrobiologybiologyCell adhesion moleculeChemistryGeneral NeuroscienceQRThrombosiscell adhesionCell BiologyGeneral MedicineFibronectinsCell biologyFibronectinCrosstalk (biology)030104 developmental biologymechanosignalingImmunologyintegrinsbiology.proteinMedicineResearch ArticleeLife
researchProduct

β1-Integrin– and K(V)1.3 channel–dependent signaling stimulates glutamate release from Th17 cells

2020

Although the impact of Th17 cells on autoimmunity is undisputable, their pathogenic effector mechanism is still enigmatic. We discovered soluble N-ethylmaleimide–sensitive factor attachment receptor (SNARE) complex proteins in Th17 cells that enable a vesicular glutamate release pathway that induces local intracytoplasmic calcium release and subsequent damage in neurons. This pathway is glutamine dependent and triggered by binding of β1-integrin to vascular cell adhesion molecule 1 (VCAM-1) on neurons in the inflammatory context. Glutamate secretion could be blocked by inhibiting either glutaminase or K(V)1.3 channels, which are known to be linked to integrin expression and highly expressed…

0301 basic medicineMultiple SclerosisGlutamic AcidVascular Cell Adhesion Molecule-1Cell Communication03 medical and health sciencesMice0302 clinical medicineAnimalsHumansChannel blockerReceptorNeuroinflammationMice KnockoutKv1.3 Potassium ChannelGlutamate secretionChemistryGlutaminaseCell adhesion moleculeIntegrin beta1Glutamate receptorGeneral MedicineCell biologyGlutamine030104 developmental biology030220 oncology & carcinogenesisTh17 CellsSNARE ProteinsResearch ArticleSignal Transduction
researchProduct

Mesenchymal Transition of High-Grade Breast Carcinomas Depends on Extracellular Matrix Control of Myeloid Suppressor Cell Activity

2016

SummaryThe extracellular matrix (ECM) contributes to the biological and clinical heterogeneity of breast cancer, and different prognostic groups can be identified according to specific ECM signatures. In high-grade, but not low-grade, tumors, an ECM signature characterized by high SPARC expression (ECM3) identifies tumors with increased epithelial-to-mesenchymal transition (EMT), reduced treatment response, and poor prognosis. To better understand how this ECM3 signature is contributing to tumorigenesis, we expressed SPARC in isogenic cell lines and found that SPARC overexpression in tumor cells reduces their growth rate and induces EMT. SPARC expression also results in the formation of a h…

0301 basic medicineMyeloidMDSCGene Expressionmedicine.disease_causeT-Lymphocytes RegulatoryPolyethylene GlycolsExtracellular matrixMiceBreast cancerMyeloid CellsOsteonectinMast Cellslcsh:QH301-705.5Mice KnockoutAntigen PresentationMice Inbred BALB CEMTepithelial to mesenchymal transitionBreast cancer; COX-2; CXCL12; ECM; EMT; G-CSF; GM-CSF; MDSC; SPARC; aminobisphosphonates; cyclooxygenase-2; epithelial to mesenchymal transition; extracellular matrix; granulocyte colony-stimulating factor; granulocyte-macrophage colony-stimulating factor; myeloid-derived suppressor cellsCXCL12Granulocyte macrophage colony-stimulating factormedicine.anatomical_structurecyclooxygenase-2granulocyte-macrophage colony-stimulating factorFemalegranulocyte colony-stimulating factormedicine.drugEpithelial-Mesenchymal Transitionextracellular matrixAntineoplastic AgentsBreast NeoplasmsBiologySettore MED/08 - Anatomia PatologicaG-CSFGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesCell Line TumormedicineAnimalsHumansEpithelial–mesenchymal transitionECMMesenchymal stem cellSPARCGM-CSFCOX-2myeloid-derived suppressor cellsXenograft Model Antitumor AssaysIsogenic human disease modelsaminobisphosphonates030104 developmental biologylcsh:Biology (General)CelecoxibDoxorubicinImmunologyCancer researchMyeloid-derived Suppressor CellaminobisphosphonateNeoplasm GradingCarcinogenesisCell Reports
researchProduct

Nrf2 expression driven by Foxp3 specific deletion of Keap1 results in loss of immune tolerance in mice

2020

European journal of immunology 50(4), 515-524 (2020). doi:10.1002/eji.201948285

0301 basic medicineNF-E2-Related Factor 2T cellImmunologyAutoimmunitychemical and pharmacologic phenomenaBiologyLymphocyte ActivationT-Lymphocytes Regulatorydigestive systemenvironment and public healthImmune toleranceImmunomodulationMice03 medical and health sciences0302 clinical medicineImmune systemImmune TolerancemedicineAnimalsHomeostasisImmunology and AllergyTranscription factorPI3K/AKT/mTOR pathwayInflammationMice KnockoutKelch-Like ECH-Associated Protein 1ChimeraEffectorTOR Serine-Threonine KinasesPeripheral toleranceFOXP3Forkhead Transcription Factorshemic and immune systemsrespiratory systemCell biologyMice Inbred C57BLOxidative Stress030104 developmental biologymedicine.anatomical_structure030215 immunology
researchProduct

Chronic intestinal inflammation in mice expressing viral Flip in epithelial cells

2018

Viruses are present in the intestinal microflora and are currently discussed as a potential causative mechanism for the development of inflammatory bowel disease. A number of viruses, such as Human Herpesvirus-8, express homologs to cellular FLIPs, which are major contributors for the regulation of epithelial cell death. In this study we analyzed the consequences of constitutive expression of HHV8-viral FLIP in intestinal epithelial cells (IECs) in mice. Surprisingly, expression of vFlip disrupts tissue homeostasis and induces severe intestinal inflammation. Moreover vFlip(IEC-tg) mice showed reduced Paneth cell numbers, associated with excessive necrotic cell death. On a molecular level vF…

0301 basic medicineNecrosisTransgeneImmunologyInflammationMice TransgenicBiologydigestive systemArticle03 medical and health sciencesMiceNecrosisViral ProteinsmedicineImmunology and AllergyAnimalsHomeostasisHumansTissue homeostasisCells CulturedRegulation of gene expressionMice KnockoutNF-kappa BHerpesviridae InfectionsInflammatory Bowel DiseasesEpitheliumCell biologyI-kappa B KinaseIntestines030104 developmental biologymedicine.anatomical_structureEnterocytesGene Expression RegulationFlipPaneth cellHerpesvirus 8 Humanmedicine.symptom
researchProduct

Septin/anillin filaments scaffold central nervous system myelin to accelerate nerve conduction

2016

Myelination of axons facilitates rapid impulse propagation in the nervous system. The axon/myelin-unit becomes impaired in myelin-related disorders and upon normal aging. However, the molecular cause of many pathological features, including the frequently observed myelin outfoldings, remained unknown. Using label-free quantitative proteomics, we find that the presence of myelin outfoldings correlates with a loss of cytoskeletal septins in myelin. Regulated by phosphatidylinositol-(4,5)-bisphosphate (PI(4,5)P2)-levels, myelin septins (SEPT2/SEPT4/SEPT7/SEPT8) and the PI(4,5)P2-adaptor anillin form previously unrecognized filaments that extend longitudinally along myelinated axons. By confoca…

0301 basic medicineNervous systemCentral Nervous SystemProteomicsScaffoldMouseProteomeNeural ConductionSeptinNerve Fibers MyelinatedMyelinGene Knockout TechniquesMiceContractile ProteinsAxonBiology (General)CytoskeletonMicroscopy ImmunoelectronCytoskeletonMyelin SheathMicroscopy ConfocalGeneral NeuroscienceQRGeneral MedicineAnatomyCell biologyglial cellsmedicine.anatomical_structureGene TargetingMedicineResearch ArticleQH301-705.5ScienceCentral nervous systemmyelinated axonsmacromolecular substancesBiologyGeneral Biochemistry Genetics and Molecular Biologymyelin structure03 medical and health sciencesSeptin/anillin filaments; central nervous system; myelinlabel-free proteomicsmedicineAnimalsneuropathologyGeneral Immunology and Microbiology030104 developmental biologynervous systemseptin cytoskeletonProtein MultimerizationSeptinsSeptin cytoskeletonNeuroscienceeLife
researchProduct

Profilin 1 delivery tunes cytoskeletal dynamics toward CNS axon regeneration

2020

After trauma, regeneration of adult CNS axons is abortive, causing devastating neurologic deficits. Despite progress in rehabilitative care, there is no effective treatment that stimulates axonal growth following injury. Using models with different regenerative capacities, followed by gain- and loss-of-function analysis, we identified profilin 1 (Pfn1) as a coordinator of actin and microtubules (MTs), powering axonal growth and regeneration. In growth cones, Pfn1 increased actin retrograde flow, MT growth speed, and invasion of filopodia by MTs, orchestrating cytoskeletal dynamics toward axonal growth. In vitro, active Pfn1 promoted MT growth in a formin-dependent manner, whereas localizati…

0301 basic medicineNervous systemGrowth ConesNeuromuscular Junctionmacromolecular substancesGlial scar03 medical and health sciencesMiceProfilins0302 clinical medicineTransduction GeneticmedicineAnimalsAxonGrowth coneCytoskeletonSpinal Cord InjuriesMice KnockoutbiologyRegeneration (biology)General MedicineGenetic TherapyDependovirusSciatic NerveCell biologyNerve Regeneration030104 developmental biologymedicine.anatomical_structurenervous system030220 oncology & carcinogenesisForminsbiology.proteinSciatic nerveFilopodiaResearch Article
researchProduct

Binge-like ethanol treatment in adolescence impairs autophagy and hinders synaptic maturation: Role of TLR4.

2018

Abstract Adolescence is a developmental period of brain maturation in which remodeling and changes in synaptic plasticity and neural connectivity take place in some brain regions. A different mechanism participates in adolescent brain maturation, including autophagy processes that play a role in synaptic development and plasticity. Alcohol is a neurotoxic compound whose abuse in adolescence causes TLR4 response activation by triggering neuroinflammation, neural damage and behavioral alterations. However, the potential participation of autophagy in long-term neurochemical and cognitive dysfunctions induced by binge ethanol drinking in adolescence is uncertain. We therefore evaluated whether …

0301 basic medicineNeurogenesisImmune receptorBiologyBinge Drinking03 medical and health sciencesMice0302 clinical medicineNeurochemicalAutophagyAnimalsTLR4PI3K/AKT/mTOR pathwayNeuroinflammationMice KnockoutBinge ethanol treatmentEthanolGeneral NeuroscienceAutophagyAge FactorsAdolescenceMice Inbred C57BLToll-Like Receptor 4030104 developmental biologyStructural synaptic plasticitySynaptic plasticitySynapsesExcitatory postsynaptic potentialTLR4FemaleNeuroscience030217 neurology & neurosurgeryNeuroscience letters
researchProduct