Search results for " Knockout"
showing 10 items of 764 documents
Combined B, T and NK Cell Deficiency Accelerates Atherosclerosis in BALB/c Mice.
2016
This study focused on the unique properties of both the Ldlr knockout defect (closely mimicking the human situation) and the BALB/c (C) inbred mouse strain (Th-2 slanted immune response). We generated two immunodeficient strains with severe combined B- and T-cell immunodeficiency with or without a complete lack of natural killer cells to revisit the role of adaptive immune responses on atherogenesis. C-Ldlr-/- Rag1-/- mice, which show severe combined B- and T-cell immunodeficiency and C-Ldlr-/- Rag1-/- Il2rg-/- mice, which combine the T- and B-cell defect with a complete lack of natural killer cells and inactivation of multiple cytokine signalling pathways were fed an atherogenic Western ty…
Conditional Gene-Targeting in Mice: Problems and Solutions.
2018
PIWIL3 Forms a Complex with TDRKH in Mammalian Oocytes.
2019
P-element induced wimpy testis (PIWIs) are crucial guardians of genome integrity, particularly in germ cells. While mammalian PIWIs have been primarily studied in mouse and rat, a homologue for the human PIWIL3 gene is absent in the Muridae family, and hence the unique function of PIWIL3 in germ cells cannot be effectively modeled by mouse knockouts. Herein, we investigated the expression, distribution, and interaction of PIWIL3 in bovine oocytes. We localized PIWIL3 to mitochondria, and demonstrated that PIWIL3 expression is stringently controlled both spatially and temporally before and after fertilization. Moreover, we identified PIWIL3 in a mitochondrial-recruited three-membered complex…
Inflammation and the coagulation system in tuberculosis: Tissue Factor leads the dance
2016
Mycobacterium tuberculosis, the causative agent of tuberculosis, drives the formation of granulomas, structures in which both immune cells and the bacterial pathogen cohabit. The most abundant cells in granulomas are macrophages, which contribute as both cells with bactericidal activity and as targets for M. tuberculosis infection and proliferation during the entire course of infection. The mechanisms and factors involved in the regulation and control of macrophage microenvironment-specific polarization and plasticity are not well understood, as some granulomas are able to control bacteria growth and others fail to do so, permitting bacterial spread. In this issue of the European Journal of…
C3 Drives Inflammatory Skin Carcinogenesis Independently of C5
2021
Nonmelanoma skin cancer such as cutaneous squamous cell carcinoma (cSCC) is the most common form of cancer and can occur as a consequence of DNA damage to the epithelium by UVR or chemical carcinogens. There is growing evidence that the complement system is involved in cancer immune surveillance; however, its role in cSCC remains unclear. Here, we show that complement genes are expressed in tissue from patients with cSCC, and C3 activation fragments are present in cSCC biopsies, indicating complement activation. Using a range of complement-deficient mice in a two-stage mouse model of chemically-induced cSCC, where a subclinical dose of 7,12-dimethylbenz[a]anthracene causes oncogenic mutatio…
Junctional adhesion molecules JAM-B and JAM-C promote autoimmune-mediated liver fibrosis in mice
2018
Fibrosis remains a serious health concern in patients with chronic liver disease. We recently reported that chemically induced chronic murine liver injury triggers increased expression of junctional adhesion molecules (JAMs) JAM-B and JAM-C by endothelial cells and de novo synthesis of JAM-C by hepatic stellate cells (HSCs). Here, we demonstrate that biopsies of patients suffering from primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC) or autoimmune hepatitis (AIH) display elevated levels of JAM-C on portal fibroblasts (PFs), HSCs, endothelial cells and cholangiocytes, whereas smooth muscle cells expressed JAM-C constitutively. Therefore, localization and function of JA…
Impaired Kupffer Cell Self-Renewal Alters the Liver Response to Lipid Overload during Non-alcoholic Steatohepatitis
2020
International audience; Kupffer cells (KCs) are liver-resident macrophages that self-renew by proliferation in the adult independently from monocytes. However, how they are maintained during non-alcoholic steatohepatitis (NASH) remains ill defined. We found that a fraction of KCs derived from Ly-6C+ monocytes during NASH, underlying impaired KC self-renewal. Monocyte-derived KCs (MoKCs) gradually seeded the KC pool as disease progressed in a response to embryo-derived KC (EmKC) death. Those MoKCs were partly immature and exhibited a pro-inflammatory status compared to EmKCs. Yet, they engrafted the KC pool for the long term as they remained following disease regression while acquiring matur…
Enzymatic Activity of HPGD in Treg Cells Suppresses Tconv Cells to Maintain Adipose Tissue Homeostasis and Prevent Metabolic Dysfunction.
2019
Summary Regulatory T cells (Treg cells) are important for preventing autoimmunity and maintaining tissue homeostasis, but whether Treg cells can adopt tissue- or immune-context-specific suppressive mechanisms is unclear. Here, we found that the enzyme hydroxyprostaglandin dehydrogenase (HPGD), which catabolizes prostaglandin E2 (PGE2) into the metabolite 15-keto PGE2, was highly expressed in Treg cells, particularly those in visceral adipose tissue (VAT). Nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ)-induced HPGD expression in VAT Treg cells, and consequential Treg-cell-mediated generation of 15-keto PGE2 suppressed conventional T cell activation and proliferation. C…
Nitric oxide/cGMP signaling via guanylyl cyclase isoform 1 modulates glutamate and GABA release in somatosensory cortex of mice
2017
Abstract In hippocampus, two guanylyl cyclases (NO-GC1 and NO-GC2) are involved in the transduction of the effects of nitric oxide (NO) on synaptic transmission. However, the respective roles of the NO-GC isoforms on synaptic transmission are less clear in other regions of the brain. In the present study, we used knock-out mice deficient for the NO-GC1 isoform (NO-GC1 KO) to analyze its role in the glutamatergic and GABAergic neurotransmission at pyramidal neurons in layers II/III of somatosensory cortex. NO-GC1 KO slices revealed reduced frequencies of miniature excitatory- and inhibitory-postsynaptic currents, increased paired-pulse ratios and decreased input–output curves of evoked signa…
Cohen Syndrome-Associated Cataract Is Explained by VPS13B Functions in Lens Homeostasis and Is Modified by Additional Genetic Factors
2020
International audience; Purpose: Cohen syndrome (CS) is a rare genetic disorder caused by variants of the VPS13B gene. CS patients are affected with a severe form of retinal dystrophy, and in several cases cataracts also develop. The purpose of this study was to investigate the mechanisms and risk factors for cataract in CS, as well as to report on cataract surgeries in CS patients.Methods: To understand how VPS13B is associated with visual impairments in CS, we generated the Vps13b∆Ex3/∆Ex3 mouse model. Mice from 1 to 3 months of age were followed by ophthalmoscopy and slit-lamp examinations. Phenotypes were investigated by histology, immunohistochemistry, and western blot. Literature anal…