Search results for " LEARNING"
showing 10 items of 5299 documents
On the structural connectivity of large-scale models of brain networks at cellular level
2021
AbstractThe brain’s structural connectivity plays a fundamental role in determining how neuron networks generate, process, and transfer information within and between brain regions. The underlying mechanisms are extremely difficult to study experimentally and, in many cases, large-scale model networks are of great help. However, the implementation of these models relies on experimental findings that are often sparse and limited. Their predicting power ultimately depends on how closely a model’s connectivity represents the real system. Here we argue that the data-driven probabilistic rules, widely used to build neuronal network models, may not be appropriate to represent the dynamics of the …
Evaluating the stability of pharmacophore features using molecular dynamics simulations.
2016
Abstract Molecular dynamics simulations of twelve protein—ligand systems were used to derive a single, structure based pharmacophore model for each system. These merged models combine the information from the initial experimental structure and from all snapshots saved during the simulation. We compared the merged pharmacophore models with the corresponding PDB pharmacophore models, i.e., the static models generated from an experimental structure in the usual manner. The frequency of individual features, of feature types and the occurrence of features not present in the static model derived from the experimental structure were analyzed. We observed both pharmacophore features not visible in …
Modelos animales de adicción a las drogas
2017
El desarrollo de modelos animales de refuerzo y adicción a las drogas es imprescindible para el avance en el conocimiento de las bases biológicas de este trastorno y la identificación de nuevas dianas terapéuticas. En función del componente del refuerzo que deseemos estudiar podemos servirnos de un tipo de modelos animales u otros. Podemos utilizar modelos de refuerzo basados en el efecto hedónico primario que produce el consumo de la sustancia adictiva, como los modelos de autoadministración (AA) y autoestimulación eléctrica intracraneal (AEIC), o modelos basados en el componente relacionado con el aprendizaje asociativo y la capacidad cognitiva de realizar predicciones sobre la obtención …
A Simple Method to Predict Blood-Brain Barrier Permeability of Drug- Like Compounds Using Classification Trees
2017
Background: To know the ability of a compound to penetrate the blood-brain barrier (BBB) is a challenging task; despite the numerous efforts realized to predict/measure BBB passage, they still have several drawbacks. Methods: The prediction of the permeability through the BBB is carried out using classification trees. A large data set of 497 compounds (recently published) is selected to develop the tree model. Results: The best model shows an accuracy higher than 87.6% for training set; the model was also validated using 10-fold cross-validation procedure and through a test set achieving accuracy values of 86.1% and 87.9%, correspondingly. We give a brief explanation, in structural terms, o…
A Novel Tsetlin Automata Scheme to Forecast Dengue Outbreaks in the Philippines
2018
Being capable of online learning in unknown stochastic environments, Tsetlin Automata (TA) have gained considerable interest. As a model of biological systems, teams of TA have been used for solving complex problems in a decentralized manner, with low computational complexity. For many domains, decentralized problem solving is an advantage, however, also may lead to coordination difficulties and unstable learning. To combat this negative effect, this paper proposes a novel TA coordination scheme designed for learning problems with continuous input and output. By saving and updating the best solution that has been chosen so far, we can avoid having the overall system being led astray by spur…
Prediction of Chromatin Accessibility in Gene-Regulatory Regions from Transcriptomics Data
2017
AbstractThe epigenetics landscape of cells plays a key role in the establishment of cell-type specific gene expression programs characteristic of different cellular phenotypes. Different experimental procedures have been developed to obtain insights into the accessible chromatin landscape including DNase-seq, FAIRE-seq and ATAC-seq. However, current downstream computational tools fail to reliably determine regulatory region accessibility from the analysis of these experimental data. In particular, currently available peak calling algorithms are very sensitive to their parameter settings and show highly heterogeneous results, which hampers a trustworthy identification of accessible chromatin…
Variable Ranking Feature Selection for the Identification of Nucleosome Related Sequences
2018
Several recent works have shown that K-mer sequence representation of a DNA sequence can be used for classification or identification of nucleosome positioning related sequences. This representation can be computationally expensive when k grows, making the complexity in spaces of exponential dimension. This issue effects significantly the classification task computed by a general machine learning algorithm used for the purpose of sequence classification. In this paper, we investigate the advantage offered by the so-called Variable Ranking Feature Selection method to select the most informative k − mers associated to a set of DNA sequences, for the final purpose of nucleosome/linker classifi…
A Deep Learning Model for Epigenomic Studies
2016
Epigenetics is the study of heritable changes in gene expression that does not involve changes to the underlying DNA sequence, i.e. a change in phenotype not involved by a change in genotype. At least three main factor seems responsible for epigenetic change including DNA methylation, histone modification and non-coding RNA, each one sharing having the same property to affect the dynamic of the chromatin structure by acting on Nucleosomes posi- tion. A nucleosome is a DNA-histone complex, where around 150 base pairs of double-stranded DNA is wrapped. The role of nucleosomes is to pack the DNA into the nucleus of the Eukaryote cells, to form the Chromatin. Nucleosome positioning plays an imp…
Recurrent Deep Neural Networks for Nucleosome Classification
2020
Nucleosomes are the fundamental repeating unit of chromatin. A nucleosome is an 8 histone proteins complex, in which approximately 147–150 pairs of DNA bases bind. Several biological studies have clearly stated that the regulation of cell type-specific gene activities are influenced by nucleosome positioning. Bioinformatic studies have improved those results showing proof of sequence specificity in nucleosomes’ DNA fragment. In this work, we present a recurrent neural network that uses nucleosome sequence features representation for their classification. In particular, we implement an architecture which stacks convolutional and long short-term memory layers, with the main purpose to avoid t…
Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning.
2021
Coronavirus disease 2019 (COVID-19) is a major threat worldwide due to its fast spreading. As yet, there are no established drugs available. Speeding up drug discovery is urgently required. We applied a workflow of combined in silico methods (virtual drug screening, molecular docking and supervised machine learning algorithms) to identify novel drug candidates against COVID-19. We constructed chemical libraries consisting of FDA-approved drugs for drug repositioning and of natural compound datasets from literature mining and the ZINC database to select compounds interacting with SARS-CoV-2 target proteins (spike protein, nucleocapsid protein, and 2′-o-ribose methyltransferase). Supported by…