Search results for " Learning"

showing 10 items of 5299 documents

2019

As rats learn to search for multiple sources of food or water in a complex environment, they generate increasingly efficient trajectories between reward sites. Such spatial navigation capacity involves the replay of hippocampal place-cells during awake states, generating small sequences of spatially related place-cell activity that we call "snippets". These snippets occur primarily during sharp-wave-ripples (SWRs). Here we focus on the role of such replay events, as the animal is learning a traveling salesperson task (TSP) across multiple trials. We hypothesize that snippet replay generates synthetic data that can substantially expand and restructure the experience available and make learni…

0301 basic medicineComputer sciencePlace cellMachine learningcomputer.software_genreSpatial memorySynthetic data03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineModels of neural computationGeneticsReinforcement learningMolecular BiologyEcology Evolution Behavior and SystematicsEcologybusiness.industryReservoir computingSnippet030104 developmental biologyComputational Theory and MathematicsModeling and SimulationSequence learningArtificial intelligencebusinesscomputer030217 neurology & neurosurgeryPLOS Computational Biology
researchProduct

Deep learning network for exploiting positional information in nucleosome related sequences

2017

A nucleosome is a DNA-histone complex, wrapping about 150 pairs of double-stranded DNA. The role of nucleosomes is to pack the DNA into the nucleus of the Eukaryote cells to form the Chromatin. Nucleosome positioning genome wide play an important role in the regulation of cell type-specific gene activities. Several biological studies have shown sequence specificity of nucleosome presence, clearly underlined by the organization of precise nucleotides substrings. Taking into consideration such advances, the identification of nucleosomes on a genomic scale has been successfully performed by DNA sequence features representation and classical supervised classification methods such as Support Vec…

0301 basic medicineComputer scienceSpeech recognitionCell02 engineering and technologyComputational biologyGenomeDNA sequencing03 medical and health scienceschemistry.chemical_compoundDeep Learning0202 electrical engineering electronic engineering information engineeringmedicineNucleosomeNucleotideGeneSettore ING-INF/05 - Sistemi Di Elaborazione Delle Informazionichemistry.chemical_classificationSequenceSettore INF/01 - Informaticabiologybusiness.industryDeep learningnucleosomebiology.organism_classificationSubstringChromatinIdentification (information)030104 developmental biologymedicine.anatomical_structurechemistry020201 artificial intelligence & image processingEukaryoteNucleosome classification Epigenetic Deep learning networks Recurrent Neural NetworksArtificial intelligencebusinessDNA
researchProduct

Principal components analysis: theory and application to gene expression data analysis

2018

Advances in computational power have enabled research to generate significant amounts of data related to complex biological problems. Consequently, applying appropriate data analysis techniques has become paramount to tackle this complexity. However, theoretical understanding of statistical methods is necessary to ensure that the correct method is used and that sound inferences are made based on the analysis. In this article, we elaborate on the theory behind principal components analysis (PCA), which has become a favoured multivariate statistical tool in the field of omics-data analysis. We discuss the necessary prerequisites and steps to produce statistically valid results and provide gui…

0301 basic medicineComputer sciencebusiness.industryAssociation (object-oriented programming)Big dataGenomicsMachine learningcomputer.software_genreField (computer science)03 medical and health sciences030104 developmental biology0302 clinical medicineSoftwareWorkflowPrincipal component analysisData analysisArtificial intelligencebusinesscomputer030217 neurology & neurosurgeryGenomics and Computational Biology
researchProduct

Deep Learning Architectures for DNA Sequence Classification

2017

DNA sequence classification is a key task in a generic computational framework for biomedical data analysis, and in recent years several machine learning technique have been adopted to successful accomplish with this task. Anyway, the main difficulty behind the problem remains the feature selection process. Sequences do not have explicit features, and the commonly used representations introduce the main drawback of the high dimensionality. For sure, machine learning method devoted to supervised classification tasks are strongly dependent on the feature extraction step, and in order to build a good representation it is necessary to recognize and measure meaningful details of the items to cla…

0301 basic medicineComputer sciencebusiness.industryProcess (engineering)Deep learningFeature extractionFeature selection02 engineering and technologyMachine learningcomputer.software_genreConvolutional neural networkTask (project management)03 medical and health sciences030104 developmental biologyRecurrent neural network0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligenceRepresentation (mathematics)businesscomputer
researchProduct

Differential Classical Conditioning of the Nocebo Effect: Increasing Heat-Pain Perception without Verbal Suggestions

2017

Background: Nocebo effects, including nocebo hyperalgesia, are a common phenomenon in clinical routine with manifold negative consequences. Both explicit expectations and learning by conditioning are known to induce nocebo effects, but the specific role of conditioning remains unclear, because conditioning is rarely implemented independent of verbal suggestions. Further, although pain is a multidimensional phenomenon, nocebo effects are usually assessed in subjective ratings only, neglecting, e.g., behavioral aspects. The aim of this study was to test whether nocebo hyperalgesia can be learned by conditioning without explicit expectations, to assess nocebo effects in different response chan…

0301 basic medicineDissociation (neuropsychology)Nocebomedia_common.quotation_subjectlcsh:BF1-990classical conditioning03 medical and health sciences0302 clinical medicinePerceptionPsychologyawarenessHabituationGeneral Psychologyheat-painmedia_commonOriginal Researchnocebo effectClassical conditioningImplicit learningNocebo Effect030104 developmental biologylcsh:PsychologyConditioningPsychologyimplicit learningbehavioral psychology030217 neurology & neurosurgeryCognitive psychologyFrontiers in Psychology
researchProduct

A deeper look into natural sciences with physics-based and data-driven measures

2021

Summary With the development of machine learning in recent years, it is possible to glean much more information from an experimental data set to study matter. In this perspective, we discuss some state-of-the-art data-driven tools to analyze latent effects in data and explain their applicability in natural science, focusing on two recently introduced, physics-motivated computationally cheap tools—latent entropy and latent dimension. We exemplify their capabilities by applying them on several examples in the natural sciences and show that they reveal so far unobserved features such as, for example, a gradient in a magnetic measurement and a latent network of glymphatic channels from the mous…

0301 basic medicineDynamical systems theory02 engineering and technologyMachine learningcomputer.software_genreData-drivenSet (abstract data type)03 medical and health sciencesArtificial IntelligenceEntropy (information theory)Dimension (data warehouse)lcsh:ScienceApplied PhysicsMultidisciplinarybusiness.industryPhysicsPerspective (graphical)MagnetismExperimental dataPhysik (inkl. Astronomie)021001 nanoscience & nanotechnology030104 developmental biologyPerspectiveComputer Sciencelcsh:QRelaxation (approximation)Artificial intelligence0210 nano-technologybusinesscomputeriScience
researchProduct

Use of deep learning methods to translate drug-induced gene expression changes from rat to human primary hepatocytes

2020

In clinical trials, animal and cell line models are often used to evaluate the potential toxic effects of a novel compound or candidate drug before progressing to human trials. However, relating the results of animal and in vitro model exposures to relevant clinical outcomes in the human in vivo system still proves challenging, relying on often putative orthologs. In recent years, multiple studies have demonstrated that the repeated dose rodent bioassay, the current gold standard in the field, lacks sufficient sensitivity and specificity in predicting toxic effects of pharmaceuticals in humans. In this study, we evaluate the potential of deep learning techniques to translate the pattern of …

0301 basic medicineGene ExpressionGene Expression Regulation/drug effectsPathology and Laboratory MedicineConvolutional neural networkTOXICITYMachine LearningVoeding Metabolisme en GenomicaTime Measurement0302 clinical medicineGene expressionMedicine and Health SciencesMeasurementClinical Trials as TopicMultidisciplinaryArtificial neural networkPharmaceuticsQRMetabolism and GenomicsTOXICOGENOMICS030220 oncology & carcinogenesisMetabolisme en GenomicaMedicineEngineering and TechnologyNutrition Metabolism and GenomicsHepatocytes/drug effectsAlgorithmsResearch ArticleComputer and Information SciencesClinical Trials as Topic/statistics & numerical dataNeural NetworksGenetic ToxicologyTOXICOLOGYSciencePredictive ToxicologyComputational biologyBiologyComputer03 medical and health sciencesDose Prediction MethodsDeep LearningVoedingArtificial IntelligenceIn vivoGeneticsLife ScienceAnimalsHumansGeneNutritionbusiness.industryDeep learningBiology and Life SciencesGold standard (test)REPRESENTATIONSRats030104 developmental biologyGene Expression RegulationHepatocytesArtificial intelligenceNeural Networks ComputerToxicogenomicsbusinessNeuroscience
researchProduct

Frailty Quantified by the "Valencia Score" as a Potential Predictor of Lifespan in Mice.

2017

The development of frailty scores suitable for mice and which resemble those used in the clinical scenario is of great importance to understand human frailty. The aim of the study was to determine an individual frailty score for each mouse at different ages and analyze the association between the frailty score and its lifespan. For this purpose, the "Valencia Score" for frailty was used. Thus, a longitudinal study in mice was performed analyzing weight loss, running time and speed, grip strength and motor coordination at the late-adult, mature and old ages (40, 56 and 80 weeks old, respectively). These parameters are equivalent to unintentional weight loss, poor endurance, slowness, weaknes…

0301 basic medicineGerontologyWeaknessLongitudinal studyAgingFrail ElderlyLongevityHealthy Aging03 medical and health sciencesGrip strengthMice0302 clinical medicineWeight lossWeight LossmedicineAnimalsHumansLongitudinal StudiesMaze LearningClinical scenarioGeriatric AssessmentAgedMice Inbred ICRFrailtyHand Strengthbusiness.industryLow activityAging PrematureRunning timeMotor coordination030104 developmental biologyPhenotypeModels AnimalPhysical EnduranceFemaleGeriatrics and Gerontologymedicine.symptombusiness030217 neurology & neurosurgeryThe journals of gerontology. Series A, Biological sciences and medical sciences
researchProduct

Boosting Action Observation and Motor Imagery to Promote Plasticity and Learning

2018

Neural Plasticity, 2018

0301 basic medicineImagery PsychotherapyBoosting (machine learning)Article SubjectComputer scienceMovementMachine learningcomputer.software_genrestimulationlcsh:RC321-57103 medical and health sciences0302 clinical medicineMotor imageryHumansLearninglcsh:Neurosciences. Biological psychiatry. NeuropsychiatryComputingMilieux_MISCELLANEOUSNeuronal Plasticitybusiness.industryBraincortexEditorial030104 developmental biologyNeurologyAction observationImagination[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]Neurology (clinical)Artificial intelligencebusinesscomputer030217 neurology & neurosurgery
researchProduct

PSPU-Net for Automatic Short Axis Cine MRI Segmentation of Left and Right Ventricles

2020

[EN] Characterization of the heart anatomy and function is mostly done with magnetic resonance image cine series. To achieve a correct characterization, the volume of the right and left ventricle need to be segmented, which is a timeconsuming task. We propose a new convolutional neural network architecture that combines U-net with PSP modules (PSPU-net) for the segmentation of left and right ventricle cavities and left ventricle myocardium in the diastolic frame of short-axis cine MRI images and compare its results against a classic 3D U-net architecture. We used a dataset containing 399 cases in total. The results showed higher quality results in both segmentation and final volume estimati…

0301 basic medicineLeft and rightComputer science030204 cardiovascular system & hematologyVolume estimationConvolutional neural networkU-netTECNOLOGIA ELECTRONICA03 medical and health sciencesSegmentation0302 clinical medicineVolume estimationmedicineSegmentationPSPmedicine.diagnostic_testbusiness.industryDeep learningMagnetic resonance imagingLeft ventricleCine mri030104 developmental biologymedicine.anatomical_structureVentricleRight ventricleNuclear medicinebusinessMRIVolume (compression)2020 IEEE 20th International Conference on Bioinformatics and Bioengineering (BIBE)
researchProduct