Search results for " Machine Learning"
showing 10 items of 300 documents
Machine learning techniques to estimate the degree of binder activity of reclaimed asphalt pavement
2022
Part of this research was funded by the project RTI2018-096224-J-I00 that has been cofounded by the Spanish Ministry of Science and Innovation, inside the National Program for Fostering Excellence in Scientific and Technical Research, National Subprogram of Knowledge Generation, 2018 call, in the framework of the Spanish National Plan for Scientific and Technical Research and Innovation 2017-2020, and by the European Union, through the European Regional Development Fund, with the main objective of Promoting technological development, innovation and quality research. Part of this work was financially supported by the Italian Ministry of University and Research with the research Grant PRIN 20…
Brain-predicted age difference score is related to specific cognitive functions: A multi-site replication analysis
2021
Abstract Brain-predicted age difference scores are calculated by subtracting chronological age from ‘brain’ age. Positive scores reflect accelerated ageing and are associated with increased mortality risk and poorer physical function. To date, however, the relationship between brain-predicted age difference scores and specific cognitive functions has not been systematically examined. First, applying machine learning to 1,359 T1-weighted MRI scans, we predicted the relationship between chronological age and voxel-wise grey matter data. This model was then applied to MRI data from three independent datasets, significantly predicting chronological age: Dokuz Eylul University (n=175), the Cogni…
A machine learning application to predict early lung involvement in scleroderma: A feasibility evaluation
2021
Introduction: Systemic sclerosis (SSc) is a systemic immune-mediated disease, featuring fibrosis of the skin and organs, and has the greatest mortality among rheumatic diseases. The nervous system involvement has recently been demonstrated, although actual lung involvement is considered the leading cause of death in SSc and, therefore, should be diagnosed early. Pulmonary function tests are not sensitive enough to be used for screening purposes, thus they should be flanked by other clinical examinations
A cultural heritage experience for visually impaired people
2020
Abstract In recent years, we have assisted to an impressive advance of computer vision algorithms, based on image processing and artificial intelligence. Among the many applications of computer vision, in this paper we investigate on the potential impact for enhancing the cultural and physical accessibility of cultural heritage sites. By using a common smartphone as a mediation instrument with the environment, we demonstrate how convolutional networks can be trained for recognizing monuments in the surroundings of the users, thus enabling the possibility of accessing contents associated to the monument itself, or new forms of fruition for visually impaired people. Moreover, computer vision …
A Posture Sequence Learning System for an Anthropomorphic Robotic Hand
2003
The paper presents a cognitive architecture for posture learning of an anthropomorphic robotic hand. Our approach is aimed to allow the robotic system to perform complex perceptual operations, to interact with an human user and to integrate the perceptions by a cognitive representation of the scene and the observed actions. The anthropomorphic robotic hand imitates the gestures acquired by the vision system in order to learn meaningful movements, to build its knowledge by different conceptual spaces and to perform complex interaction with the human operator.
Machine learning at the interface of structural health monitoring and non-destructive evaluation
2020
While both non-destructive evaluation (NDE) and structural health monitoring (SHM) share the objective of damage detection and identification in structures, they are distinct in many respects. This paper will discuss the differences and commonalities and consider ultrasonic/guided-wave inspection as a technology at the interface of the two methodologies. It will discuss how data-based/machine learning analysis provides a powerful approach to ultrasonic NDE/SHM in terms of the available algorithms, and more generally, how different techniques can accommodate the very substantial quantities of data that are provided by modern monitoring campaigns. Several machine learning methods will be illu…
Learning Structures in Earth Observation Data with Gaussian Processes
2020
Gaussian Processes (GPs) has experienced tremendous success in geoscience in general and for bio-geophysical parameter retrieval in the last years. GPs constitute a solid Bayesian framework to formulate many function approximation problems consistently. This paper reviews the main theoretical GP developments in the field. We review new algorithms that respect the signal and noise characteristics, that provide feature rankings automatically, and that allow applicability of associated uncertainty intervals to transport GP models in space and time. All these developments are illustrated in the field of geoscience and remote sensing at a local and global scales through a set of illustrative exa…
Convolutional Neural Networks for the classification of glitches in gravitational-wave data streams
2023
We investigate the use of Convolutional Neural Networks (including the modern ConvNeXt network family) to classify transient noise signals (i.e.~glitches) and gravitational waves in data from the Advanced LIGO detectors. First, we use models with a supervised learning approach, both trained from scratch using the Gravity Spy dataset and employing transfer learning by fine-tuning pre-trained models in this dataset. Second, we also explore a self-supervised approach, pre-training models with automatically generated pseudo-labels. Our findings are very close to existing results for the same dataset, reaching values for the F1 score of 97.18% (94.15%) for the best supervised (self-supervised) m…
On the Convergence of Tsetlin Machines for the IDENTITY- and NOT Operators
2020
The Tsetlin Machine (TM) is a recent machine learning algorithm with several distinct properties, such as interpretability, simplicity, and hardware-friendliness. Although numerous empirical evaluations report on its performance, the mathematical analysis of its convergence is still open. In this article, we analyze the convergence of the TM with only one clause involved for classification. More specifically, we examine two basic logical operators, namely, the "IDENTITY"- and "NOT" operators. Our analysis reveals that the TM, with just one clause, can converge correctly to the intended logical operator, learning from training data over an infinite time horizon. Besides, it can capture arbit…
Machine learning method for single trajectory characterization
2019
In order to study transport in complex environments, it is extremely important to determine the physical mechanism underlying diffusion, and precisely characterize its nature and parameters. Often, this task is strongly impacted by data consisting of trajectories with short length and limited localization precision. In this paper, we propose a machine learning method based on a random forest architecture, which is able to associate even very short trajectories to the underlying diffusion mechanism with a high accuracy. In addition, the method is able to classify the motion according to normal or anomalous diffusion, and determine its anomalous exponent with a small error. The method provide…