Search results for " Machine learning"

showing 10 items of 300 documents

Machine Learning for Early Diagnosis of ATTRv Amyloidosis in Non-Endemic Areas: A Multicenter Study from Italy

2023

Background: Hereditary transthyretin amyloidosis with polyneuropathy (ATTRv) is an adult-onset multisystemic disease, affecting the peripheral nerves, heart, gastrointestinal tract, eyes, and kidneys. Nowadays, several treatment options are available; thus, avoiding misdiagnosis is crucial to starting therapy in early disease stages. However, clinical diagnosis may be difficult, as the disease may present with unspecific symptoms and signs. We hypothesize that the diagnostic process may benefit from the use of machine learning (ML). Methods: 397 patients referring to neuromuscular clinics in 4 centers from the south of Italy with neuropathy and at least 1 more red flag, as well as undergoin…

machine learningATTRvGeneral Neurosciencegenetic screeninghereditary amyloid neuropathyTTRTTR; hereditary amyloid neuropathy; genetic screening; ATTRv; machine learning; genetic testinggenetic testingBrain Sciences
researchProduct

Appendectomy during the COVID-19 pandemic in Italy: a multicenter ambispective cohort study by the Italian Society of Endoscopic Surgery and new tech…

2021

AbstractMajor surgical societies advised using non-operative management of appendicitis and suggested against laparoscopy during the COVID-19 pandemic. The hypothesis is that a significant reduction in the number of emergent appendectomies was observed during the pandemic, restricted to complex cases. The study aimed to analyse emergent surgical appendectomies during pandemic on a national basis and compare it to the same period of the previous year. This is a multicentre, retrospective, observational study investigating the outcomes of patients undergoing emergent appendectomy in March–April 2019 vs March–April 2020. The primary outcome was the number of appendectomies performed, classifie…

medicine.medical_specialtyCOVID-19 PandemicCoronavirus disease 2019 (COVID-19)Endoscopic surgeryNOAppendectomy; Appendicitis; COVID-19 Pandemic; Machine learningCohort Studies03 medical and health sciences0302 clinical medicinePostoperative ComplicationsRetrospective StudiePandemicMachine learningmedicineHumansAppendectomyAppendicitiLaparoscopyPandemicsRetrospective Studiesmedicine.diagnostic_testPandemicbusiness.industryCOVID-19 Pandemic Appendicitis Appendicectomy Machine learningSARS-CoV-2COVID-19Length of Staymedicine.diseaseAppendicitisAppendicitisSettore MED/18SurgeryItaly030220 oncology & carcinogenesisAppendectomy; appendicitis; COVID-19 pandemic; machine learning; appendectomy; cohort studies; humans; Italy; length of stay; pandemics; postoperative complications; retrospective studies; SARS-CoV-2; appendicitis; COVID-19; laparoscopy030211 gastroenterology & hepatologySurgeryObservational studyOriginal ArticleLaparoscopyPostoperative ComplicationAppendicectomyCohort StudiebusinessComplicationCohort studyHuman
researchProduct

Editorial for the Special Issue “Frontiers in Spectral Imaging and 3D Technologies for Geospatial Solutions”

2019

This Special Issue hosts papers on the integrated use of spectral imaging and 3D technologies in remote sensing, including novel sensors, evolving machine learning technologies for data analysis, and the utilization of these technologies in a variety of geospatial applications. The presented results showed improved results when multimodal data was used in object analysis.

medicine.medical_specialtyGeospatial analysisComputer sciencehyperspectral imagingSciencecomputer.software_genrehyperspectral imaging; point cloud; sensor integration; data fusion; machine learning; deep learning; classification; estimation; semantic segmentation; object detection; point cloud filteringmedicine3D-mallinnussensor integrationpoint cloud filteringdata fusionestimationbusiness.industryDeep learningspektrikuvausQHyperspectral imagingdeep learningobject detectionSensor fusionObject (computer science)Data scienceObject detectionsemantic segmentationSpectral imagingVariety (cybernetics)classificationpoint cloud filteringsegmentointikoneoppiminenmachine learningclassificationGeneral Earth and Planetary SciencesArtificial intelligencekaukokartoitusbusinesscomputerpoint cloudRemote Sensing
researchProduct

An Emulator Toolbox to Approximate Radiative Transfer Models with Statistical Learning

2015

Physically-based radiative transfer models (RTMs) help in understanding the processes occurring on the Earth’s surface and their interactions with vegetation and atmosphere. When it comes to studying vegetation properties, RTMs allows us to study light interception by plant canopies and are used in the retrieval of biophysical variables through model inversion. However, advanced RTMs can take a long computational time, which makes them unfeasible in many real applications. To overcome this problem, it has been proposed to substitute RTMs through so-called emulators. Emulators are statistical models that approximate the functioning of RTMs. Emulators are advantageous in real practice because…

multi-outputComputer scienceradiative transfer modelsScienceExtrapolationemulatorMachine learningcomputer.software_genreemulator; machine learning; radiative transfer models; multi-output; ARTMO; GUI toolbox; FLEX; fluorescenceAtmosphereARTMOPartial least squares regressionRadiative transferMATLABcomputer.programming_languageArtificial neural networkbusiness.industryQStatistical modelVegetationToolboxFLEXmachine learningPrincipal component analysisGeneral Earth and Planetary SciencesfluorescenceArtificial intelligencebusinessAlgorithmcomputerGUI toolboxRemote Sensing
researchProduct

A Navigation and Augmented Reality System for Visually Impaired People

2021

In recent years, we have assisted with an impressive advance in augmented reality systems and computer vision algorithms, based on image processing and artificial intelligence. Thanks to these technologies, mainstream smartphones are able to estimate their own motion in 3D space with high accuracy. In this paper, we exploit such technologies to support the autonomous mobility of people with visual disabilities, identifying pre-defined virtual paths and providing context information, reducing the distance between the digital and real worlds. In particular, we present ARIANNA+, an extension of ARIANNA, a system explicitly designed for visually impaired people for indoor and outdoor localizati…

navigation; visually impaired; computer vision; augmented reality; cultural context; convolutional neural network; machine learning; hapticExploitComputer scienceconvolutional neural networkImage processingContext (language use)02 engineering and technologyTP1-1185BiochemistryConvolutional neural networkArticleMotion (physics)computer visionAnalytical ChemistrySettore ING-INF/04 - AutomaticaArtificial IntelligenceHuman–computer interactioncultural context0202 electrical engineering electronic engineering information engineeringHumansElectrical and Electronic EngineeringnavigationInstrumentationHaptic technologySettore ING-INF/03 - TelecomunicazioniChemical technology020206 networking & telecommunicationsAtomic and Molecular Physics and Opticsaugmented realitymachine learning020201 artificial intelligence & image processingAugmented realityvisually impairedNeural Networks ComputerhapticAlgorithmsVisually Impaired PersonsPATH (variable)augmented reality computer vision convolutional neural network cultural context haptic machine learning navigation visually impaired Algorithms Artificial Intelligence Humans Neural Networks Computer Augmented Reality Visually Impaired PersonsSensors
researchProduct

Course Satisfaction in Engineering Education Through the Lens of Student Agency Analytics

2020

This Research Full Paper presents an examination of the relationships between course satisfaction and student agency resources in engineering education. Satisfaction experienced in learning is known to benefit the students in many ways. However, the varying significance of the different factors of course satisfaction is not entirely clear. We used a validated questionnaire instrument, exploratory statistics, and supervised machine learning to examine how the different factors of student agency affect course satisfaction among engineering students (N = 293). Teacher’s support and trust for the teacher were identified as both important and critical factors concerning experienced course satisf…

opintomenestystekniset alatAffect (psychology)Course satisfactionAgency (sociology)ComputingMilieux_COMPUTERSANDEDUCATIONsupervised machine learningopintotoimistotMedical educationopiskelijatbusiness.industryexploratory statistics05 social sciencesCritical factorscourse satisfaction050301 educationInformation technologyCitizen journalismkoneoppiminenEngineering educationAnalyticstyytyväisyysopiskelustudent agency0509 other social sciences050904 information & library sciencesbusinessPsychology0503 education
researchProduct

Enhancing identification of causal effects by pruning

2018

Causal models communicate our assumptions about causes and effects in real-world phe- nomena. Often the interest lies in the identification of the effect of an action which means deriving an expression from the observed probability distribution for the interventional distribution resulting from the action. In many cases an identifiability algorithm may return a complicated expression that contains variables that are in fact unnecessary. In practice this can lead to additional computational burden and increased bias or inefficiency of estimates when dealing with measurement error or missing data. We present graphical criteria to detect variables which are redundant in identifying causal effe…

päättelyFOS: Computer and information sciencesalgorithmcausal modelMachine Learning (stat.ML)Machine Learning (cs.LG)Computer Science - Learningleikkaus (kasvit)koneoppiminenStatistics - Machine Learningidentiafiabilityalgoritmitkausaliteetticausal inferencetunnistaminen
researchProduct

Radiomics Analysis of Brain [18F]FDG PET/CT to Predict Alzheimer’s Disease in Patients with Amyloid PET Positivity: A Preliminary Report on the Appli…

2022

Background: Early in-vivo diagnosis of Alzheimer’s disease (AD) is crucial for accurate management of patients, in particular, to select subjects with mild cognitive impairment (MCI) that may evolve into AD, and to define other types of MCI non-AD patients. The application of artificial intelligence to functional brain [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography(CT) aiming to increase diagnostic accuracy in the diagnosis of AD is still undetermined. In this field, we propose a radiomics analysis on advanced imaging segmentation method Statistical Parametric Mapping (SPM)-based completed with a Machine-Learning (ML) application to predict the diagnosi…

radiomics; Alzheimer’s disease; PET/CT; machine learningAlzheimer’s disease; machine learning; PET/CT; radiomicsmachine learningPET/CTradiomicsradiomicClinical Biochemistryradiomics; Alzheimer's disease; PET/CT; machine learningAlzheimer’s diseaseDiagnostics
researchProduct

Emulation of Sun-Induced Fluorescence from Radiance Data Recorded by the HyPlant Airborne Imaging Spectrometer

2021

The retrieval of sun-induced fluorescence (SIF) from hyperspectral radiance data grew to maturity with research activities around the FLuorescence EXplorer satellite mission FLEX, yet full-spectrum estimation methods such as the spectral fitting method (SFM) are computationally expensive. To bypass this computational load, this work aims to approximate the SFM-based SIF retrieval by means of statistical learning, i.e., emulation. While emulators emerged as fast surrogate models of simulators, the accuracy-speedup trade-offs are still to be analyzed when the emulation concept is applied to experimental data. We evaluated the possibility of approximating the SFM-like SIF output directly based…

sif010504 meteorology & atmospheric sciencesprincipal component analysisComputer scienceSciencesun-induced fluorescenceMultispectral image0211 other engineering and technologiesImaging spectrometeremulation02 engineering and technology01 natural sciencesRobustness (computer science)emulation; machine learning; sun-induced fluorescence; sif; spectral fitting method (sfm); principal component analysis021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingEmulationDimensionality reductionQHyperspectral imagingspectral fitting method (sfm)machine learningPrincipal component analysisRadianceGeneral Earth and Planetary Sciencesddc:620Remote Sensing
researchProduct

Problem Transformation Methods with Distance-Based Learning for Multi-Target Regression

2020

Multi-target regression is a special subset of supervised machine learning problems. Problem transformation methods are used in the field to improve the performance of basic methods. The purpose of this article is to test the use of recently popularized distance-based methods, the minimal learning machine (MLM) and the extreme minimal learning machine (EMLM), in problem transformation. The main advantage of the full data variants of these methods is the lack of any meta-parameter. The experimental results for the MLM and EMLM show promising potential, emphasizing the utility of the problem transformation especially with the EMLM. peerReviewed

the minimal learning machine (MLM) and the extreme minimal learning machine (EMLM)koneoppiminenemphasizing the utility of the problem transformation especially with the EMLM.Multi-target regression is a special subset of supervised machine learning problems. Problem transformation methods are used in the field to improve the performance of basic methods. The purpose of this article is to test the use of recently popularized distance-based methodsin problem transformation. The main advantage of the full data variants of these methods is the lack of any meta-parameter. The experimental results for the MLM and EMLM show promising potential
researchProduct