Search results for " Magnetic fields"

showing 10 items of 66 documents

Multiwavelength monitoring of BD+53°2790 , the optical counterpart to 4U 2206+54

2005

We present the results of our long-term monitoring of BD+53 2790, the optical counterpart to the X-ray source 4U~2206+54. Unlike previous studies that classify the source as a Be/X-ray binary, we find that its optical and infrared properties differ from those of typical Be stars: the variability of the V/R ratio is not cyclical; there are variations in the shape and strength of the H$\alpha$ emission line on timescales less than 1 day; and no correlation between the EW and the IR magnitudes or colors is seen. Our observations suggest that BD+53 2790 is very likely a peculiar O9.5V star. In spite of exhaustive searches we cannot find any significant modulation in any emission line parameter …

InfraredFOS: Physical sciencesBinary numberBD+53º2790IndividualAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsEarly-typeStar (graph theory)UNESCO::ASTRONOMÍA Y ASTROFÍSICAAstrophysicsStars ; Early-type ; Emission-line ; Be ; Magnetic fields ; Individual ; BD+53º2790Modulation (music)Emission spectrumSpectroscopyAstrophysics::Galaxy AstrophysicsPhysicsAstrophysics (astro-ph)Astronomy and AstrophysicsBeStars:ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia [UNESCO]StarsSpace and Planetary ScienceMagnetic fieldsUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogoniaEmission-line:ASTRONOMÍA Y ASTROFÍSICA [UNESCO]
researchProduct

Kinetics of doublet formation in bicomponent magnetic suspensions: The role of the magnetic permeability anisotropy

2017

Micron-sized particles (microbeads) dispersed in a suspension of magnetic nanoparticles, i.e., ferrofluids, can be assembled into different types of structures upon application of an externalmagnetic field. This paper is devoted to theoretical modeling of a relative motion of a pair of microbeads (either soft ferromagnetic or diamagnetic) in the ferrofluid under the action of applied uniform magnetic field which induces magnetic moments in the microbeads making them attracting to each other. The model is based on a point-dipole approximation for the magnetic interactions between microbeads mediated by the ferrofluid; however, the ferrofluid is considered to possess an anisotropic magnetic p…

MAGNETIC PERMEABILITYPOINT-DIPOLE APPROXIMATIONFerrofluidMaterials scienceMagnetism02 engineering and technology01 natural sciencesMAGNETISMPhysics::Fluid DynamicsTHEORETICAL MODELINGUNIFORM MAGNETIC FIELDS0103 physical sciencesNANOPARTICLES[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]PERMEABILITY ANISOTROPY010306 general physicsSUSPENSIONS (COMPONENTS)ANISOTROPYEXTERNAL MAGNETIC FIELDMagnetic momentMICRON-SIZED PARTICLESMAGNETIC FIELDSMAGNETIC FLUIDS021001 nanoscience & nanotechnologyMagnetic fieldMAGNETIC INTERACTIONSMagnetic anisotropySUSPENSIONS (FLUIDS)FerromagnetismMAGNETIC MOMENTSChemical physicsMAGNETIC NANO-PARTICLESNANOMAGNETICSMAGNETIC ANISOTROPYDiamagnetismMagnetic nanoparticles0210 nano-technology[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft]ANISOTROPIC MEDIA
researchProduct

How to form a millisecond magnetar? Magnetic field amplification in protoneutron stars

2017

Extremely strong magnetic fields of the order of $10^{15}\,{\rm G}$ are required to explain the properties of magnetars, the most magnetic neutron stars. Such a strong magnetic field is expected to play an important role for the dynamics of core-collapse supernovae, and in the presence of rapid rotation may power superluminous supernovae and hypernovae associated to long gamma-ray bursts. The origin of these strong magnetic fields remains, however, obscure and most likely requires an amplification over many orders of magnitude in the protoneutron star. One of the most promising agents is the magnetorotational instability (MRI), which can in principle amplify exponentially fast a weak initia…

MHD[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsmagnetic fieldsMagnetar01 natural sciencesstars: neutronsupernovae: generalstars: rotation0103 physical sciencesstars: magnetic fieldsAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsMillisecond010308 nuclear & particles physicsAstronomy and AstrophysicsMagnetic fieldStarsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceinstabilitiesMagnetohydrodynamicsAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

MHD modeling of supernova remnants expanding through inhomogeneous interstellar medium

2009

Magnetohydrodynamics (MHD) Shock waves ISM: supernova remnants ISM: magnetic fields
researchProduct

Hydrogen non-equilibrium ionisation effects in coronal mass ejections

2020

This research has received funding from the Science and Technology Facilities Council (UK) through the consolidated grant ST/N000609/1 and the European Research Council (ERC) under the European Union Horizon 2020 research and innovation program (grant agreement No. 647214). D.H.M. would like to thank both the UK STFC and the ERC (Synergy grant: WHOLE SUN, grant Agreement No. 810218) for financial support. D.H.M. and P.P. would like to thank STFC for IAA funding under grant number SMC1-XAS012. This work used the DiRAC@Durham facility man-aged by the Institute for Computational Cosmology on behalf of the STFC DiRAC HPC Facility (www.dirac.ac.uk. The equipment was funded by BEIS capital fundin…

Magnetohydrodynamics (MHD)010504 meteorology & atmospheric sciencesHydrogenSun: coronal mass ejections (CMEs)FOS: Physical scienceschemistry.chemical_elementAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciences7. Clean energycoronal mass ejections (CMEs) [un]Ionization0103 physical sciencesCoronal mass ejectionAstrophysics::Solar and Stellar AstrophysicsQB Astronomydata analysis [Methods]Sun: magnetic fields010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)QCQB0105 earth and related environmental sciencesPhysicsUV radiation [Sun]Sun: coronaAstronomy and Astrophysics3rd-DASPlasmaMagnetic fluxSolar windQC PhysicsAstrophysics - Solar and Stellar AstrophysicschemistrySpace and Planetary SciencePhysics::Space PhysicsPlasma diagnosticsMagnetohydrodynamicsAstronomy & Astrophysics
researchProduct

Determining the source and eruption dynamics of a stealth CME using NLFFF modelling and MHD simulations

2021

Coronal mass ejections (CMEs) that exhibit weak or no eruption signatures in the low corona, known as stealth CMEs, are problematic as upon arrival at Earth they can lead to geomagnetic disturbances that were not predicted by space weather forecasters. We investigate the origin and eruption of a stealth event that occurred on 2015 January 3 that was responsible for a strong geomagnetic storm upon its arrival at Earth. To simulate the coronal magnetic field and plasma parameters of the eruption we use a coupled approach. This approach combines an evolutionary nonlinear force-free field model of the global corona with a MHD simulation. The combined simulation approach accurately reproduces th…

Magnetohydrodynamics (MHD)010504 meteorology & atmospheric sciencesSun: coronal mass ejections (CMEs)FOS: Physical sciencesAstrophysics01 natural sciencesPhysics::GeophysicsAeronauticsMethods: data analysis0103 physical sciencesQB AstronomyAstrophysics::Solar and Stellar Astrophysicsdata analysis [Methods]Sun: magnetic fields010303 astronomy & astrophysicsQCSolar and Stellar Astrophysics (astro-ph.SR)QB0105 earth and related environmental sciencesPhysicsAstronomy and Astrophysics3rd-DAScoronal mass ejections (CMEs) [Sun]QC PhysicsAstrophysics - Solar and Stellar Astrophysicsmagnetic fields [Sun]13. Climate actionSpace and Planetary SciencePhysics::Space PhysicsAstronomy & Astrophysics
researchProduct

MHD simulations of the in situ generation of kink and sausage waves in the solar corona by collision of dense plasma clumps

2019

Funding: This research has received funding from the UK Science and Technology Facilities Council (Consolidated Grant ST/K000950/1) and the European Union Horizon 2020 research and innovation programme (grant agreement No. 647214). P.A. acknowledges funding from his STFC Ernest Rutherford Fellowship (No. ST/R004285/1). This research was supported by the Research Council of Norway through its Centres of Excellence scheme, project number 262622. Context. Magnetohydrodynamic (MHD) waves are ubiquitous in the solar corona where the highly structured magnetic fields provide efficient wave guides for their propagation. While MHD waves have been observed originating from lower layers of the solar …

Magnetohydrodynamics (MHD)010504 meteorology & atmospheric sciencescorona [Sun]F300NDASFOS: Physical sciencesContext (language use)AstrophysicsF500Parameter space01 natural sciences0103 physical sciencesQB AstronomyAstrophysics::Solar and Stellar AstrophysicsMagnetohydrodynamic drivehelioseismology [Sun]Sun: oscillations010303 astronomy & astrophysicsSun: magnetic fieldsQCSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesQBSun: helioseismologyPhysicsSun: coronaComputer Science::Information Retrievaloscillations [Sun]Astronomy and AstrophysicsMechanicsPlasmaMagnetic fieldWavelengthAmplitudeQC Physicsmagnetic fields [Sun]Astrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysics::Space PhysicsMagnetohydrodynamicsAstronomy & Astrophysics
researchProduct

A new MHD-assisted Stokes inversion technique

2016

©2017 The American Astronomical Society. All rights reserved. We present a new method of Stokes inversion of spectropolarimetric data and evaluate it by taking the example of a Sunrise/IMaX observation. An archive of synthetic Stokes profiles is obtained by the spectral synthesis of state-of-the-art magnetohydrodynamics (MHD) simulations and a realistic degradation to the level of the observed data. The definition of a merit function allows the archive to be searched for the synthetic Stokes profiles that best match the observed profiles. In contrast to traditional Stokes inversion codes, which solve the Unno–Rachkovsky equations for the polarized radiative transfer numerically and fit the …

Magnetohydrodynamics (MHD)010504 meteorology & atmospheric sciencesphotosphere [Sun]FOS: Physical sciencesTechniques: spectroscopicAstrophysicspolarimetric [Techniques]01 natural sciencesspectroscopic [Techniques]0103 physical sciencesMerit functionRadiative transferInitial value problemAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSun: magnetic fieldsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesPhysicsRelaxation processTechniques: polarimetricSun: photosphereAstronomy and AstrophysicsInversion (meteorology)Computational physicsmagnetic fields [Sun]Astrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceSolar timeMagnetohydrodynamics
researchProduct

Contribution of phase-mixing of Alfvén waves to coronal heating in multi-harmonic loop oscillations

2018

This research has received funding from the Science and Technology Facilities Council (UK) through the consolidated grant ST/N000609/1 and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program ( grant agreement No. 647214). This work is supported by the European Research Council under the SeismoSun Research Project No. 321141 (DJP). This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 724326). This work used the DiRAC Data Centric system at Durham University, operated by the Institute for Computational Cosmology on behalf o…

Magnetohydrodynamics (MHD)corona [Sun]010504 meteorology & atmospheric sciencesAstrophysics7. Clean energy01 natural sciencesCoronal heatingQB AstronomyRESONANT ABSORPTIONAstrophysics::Solar and Stellar AstrophysicsQASun: magnetic fields010303 astronomy & astrophysicsQCQBSun: helioseismologymedia_commonPhysicsoscillations [Sun]European researchAstrophysics::Instrumentation and Methods for AstrophysicsKINK OSCILLATIONSmagnetic fields [Sun]MHD WAVESAstrophysics - Solar and Stellar AstrophysicsPhysical SciencesPhysics::Space Physicsatmosphere [Sun]INSTABILITYDirac (software)NDASTRACELibrary scienceAstronomy & AstrophysicsComputer Science::Digital Librariesmagnetohydrodynamics (MHD)0103 physical sciencesmedia_common.cataloged_instancewavesQA Mathematicshelioseismology [Sun]Sun: oscillationsEuropean unionPhase mixing0105 earth and related environmental sciencesScience & TechnologySun: coronaSEISMOLOGYAstronomy and AstrophysicsPhysics::History of PhysicsQC PhysicsSpace and Planetary ScienceWavesTRANSVERSE OSCILLATIONSAstronomy & Astrophysics
researchProduct

Simulating AIA observations of a flux rope ejection

2014

D.H.M. would like to thank STFC, the Leverhulme Trust and the European Commission’s Seventh Framework Programme (FP7/2007-2013) for their financial support. P.P. would like to thank the European Commission’s Seventh Framework Programme (FP7/2007-2013) under grant agreement SWIFF (project 263340, http://www.swiff.eu) and STFC for financial support. These results were obtained in the framework of the projects GOA/2009-009 (KU Leuven), G.0729.11 (FWO-Vlaanderen) and C 90347 (ESA Prodex 9). The research leading to these results has also received funding from the European Commission’s Seventh Framework Programme (FP7/2007-2013) under the grant agreements SOLSPANET (project No. 269299, http:// ww…

Magnetohydrodynamics (MHD)corona [Sun]Sun: coronal mass ejections (CMEs)FOS: Physical sciencesAstrophysicsmagnetohydrodynamics (MHD)7. Clean energyProminencesObservatoryRadiative transferQB AstronomyAstrophysics::Solar and Stellar AstrophysicsQA MathematicsQASun: magnetic fieldsSolar and Stellar Astrophysics (astro-ph.SR)QBPhysicsUV radiation [Sun]Line-of-sightSun: coronaAstronomy and AstrophysicsPlasmaSun: UV radiationCoronacoronal mass ejections (CMEs) [Sun]Magnetic fluxSun: filamentsAstrophysics - Solar and Stellar Astrophysicsmagnetic fields [Sun]13. Climate actionSpace and Planetary ScienceExtreme ultravioletPhysics::Space Physicsfilaments prominences [Sun]Rope
researchProduct