Search results for " Mathematical"
showing 10 items of 686 documents
Precise measurement of the neutrino mixing parameter θ23 from muon neutrino disappearance in an off-axis beam
2014
New data from the T2K neutrino oscillation experiment produce the most precise measurement of the neutrino mixing parameter theta_{23}. Using an off-axis neutrino beam with a peak energy of 0.6 GeV and a data set corresponding to 6.57 x 10^{20} protons on target, T2K has fit the energy-dependent nu_mu oscillation probability to determine oscillation parameters. Marginalizing over the values of other oscillation parameters yields sin^2 (theta_{23}) = 0.514 +0.055/-0.056 (0.511 +- 0.055), assuming normal (inverted) mass hierarchy. The best-fit mass-squared splitting for normal hierarchy is Delta m^2_{32} = (2.51 +- 0.10) x 10^{-3} eV^2/c^4 (inverted hierarchy: Delta m^2_{13} = (2.48 +- 0.10) …
Measurement of the inclusive $\nu_{\mu}$ charged current cross section on iron and hydrocarbon in the T2K on-axis neutrino beam
2014
We report a measurement of the $\nu_\mu$ inclusive charged current cross sections on iron and hydrocarbon in the T2K on-axis neutrino beam. The measured inclusive charged current cross sections on iron and hydrocarbon averaged over the T2K on-axis flux with a mean neutrino energy of 1.51 GeV are $(1.444\pm0.002(stat.)_{-0.157}^{+0.189}(syst.))\times 10^{-38}\mathrm{cm}^2/\mathrm{nucleon}$, and $(1.379\pm0.009(stat.)_{-0.147}^{+0.178}(syst.))\times 10^{-38}\mathrm{cm}^2/\mathrm{nucleon}$, respectively, and their cross section ratio is $1.047\pm0.007(stat.)\pm0.035(syst.)$. These results agree well with the predictions of the neutrino interaction model, and thus we checked the correct treatme…
The beam and detector of the NA62 experiment at CERN
2017
NA62 is a fixed-target experiment at the CERN SPS dedicated to measurements of rare kaon decays. Such measurements, like the branching fraction of the $K^{+} \rightarrow \pi^{+} \nu \bar\nu$ decay, have the potential to bring significant insights into new physics processes when comparison is made with precise theoretical predictions. For this purpose, innovative techniques have been developed, in particular, in the domain of low-mass tracking devices. Detector construction spanned several years from 2009 to 2014. The collaboration started detector commissioning in 2014 and will collect data until the end of 2018. The beam line and detector components are described together with their early …
Measurement of the c0 Baryon Lifetime
2018
We report a measurement of the lifetime of the $��_c^0$ baryon using proton-proton collision data at center-of-mass energies of 7 and 8~TeV, corresponding to an integrated luminosity of 3.0 fb$^{-1}$ collected by the LHCb experiment. The sample consists of about 1000 $��_b^-\to��_c^0��^-\bar��_�� X$ signal decays, where the $��_c^0$ baryon is detected in the $pK^-K^-��^+$ final state and $X$ represents possible additional undetected particles in the decay. The $��_c^0$ lifetime is measured to be $��_{��_c^0} = 268\pm24\pm10\pm2$ fs, where the uncertainties are statistical, systematic, and from the uncertainty in the $D^+$ lifetime, respectively. This value is nearly four times larger than, …
Solid-solid phase transition in hard ellipsoids
2009
We present a computer simulation study of the crystalline phases of hard ellipsoids of revolution. A previous study [P. Pfleiderer and T. Schilling, Phys. Rev. E 75, 020402 (2007)]. showed that for aspect ratios a/bor=3 the previously suggested stretched-fcc phase [D. Frenkel and B. Mulder, Mol. Phys. 55, 1171 (1985)] is unstable with respect to a simple monoclinic phase with two ellipsoids of different orientations per unit cell (SM2). In order to study the stability of these crystalline phases at different aspect ratios and as a function of density we have calculated their free energies by thermodynamic integration. The integration path was sampled by an expanded ensemble method in which …
Pattern-Recognition: a Foundational Approach
2015
This paper aims at giving a contribution to the ongoing attempt to turn the theory of pattern-recognition into a rigorous science. In this article we address two problems which lie at the foundations of pattern-recognition theory: (i) What is a pattern? and (ii) How do we come to know patterns? In so doing much attention will be paid to tracing a non-arbitrary connection between (i) and (ii), a connection which will be ultimately based on considerations relating to Darwin’s theory of evolution.
Object, Structure, and Form
2012
The main task of this paper is to develop the non-Platonist view of mathematics as a science of structures I have called, borrowing the label from Putnam, `realism with the human face'. According to this view, if by `object' we mean what exists independently of whether we are thinking about it or not, mathematics is a science of patterns (structures), where patterns are neither objects nor properties of objects, but aspects (or aspects of aspects, etc.) of concrete objects which dawn on us when we represent objects (or aspects of... within a given system (of representation). Mathematical patterns, therefore, are real, because they ultimately depend on concrete objects, but are neither objec…
Gravity-induced liquid crystal phase transitions of colloidal platelets.
2004
he influence of gravity on a suspension of sterically stabilized colloidal gibbsite platelets is studied. An initially isotropic-nematic biphasic sample of such a suspension develops a columnar phase on the bottom on prolonged standing. This phenomenon is described using a simple osmotic compression model. We performed Monte Carlo simulations of cut spheres with aspect ratio L/D = 1/15 and took data from the literature to supply the equations of state required for the model. We find that the model describes the observed three-phase equilibrium quite well.
Tuning the defect configurations in nematic and smectic liquid crystalline shells
2013
Thin liquid crystalline shells surrounding and surrounded by aqueous phases can be conveniently produced using a nested capillary microfluidic system, as was first demonstrated by Fernandez-Nieves et al. in 2007. By choosing particular combinations of stabilizers in the internal and external phases, different types of alignment, uniform or hybrid, can be ensured within the shell. Here, we investigate shells in the nematic and smectic phases under varying boundary conditions, focusing in particular on textural transformations during phase transitions, on the interaction between topological defects in the director field and inclusions in the liquid crystal (LC), and on the possibility to rel…
Study of the material of the ATLAS inner detector for Run 2 of the LHC
2017
The ATLAS inner detector comprises three different sub-detectors: the pixel detector, the silicon strip tracker, and the transition-radiation drift-tube tracker. The Insertable B-Layer, a new innermost pixel layer, was installed during the shutdown period in 2014, together with modifications to the layout of the cables and support structures of the existing pixel detector. The material in the inner detector is studied with several methods, using a low-luminosity root s = 13 TeV pp collision sample corresponding to around 2.0 nb(-1) collected in 2015 with the ATLAS experiment at the LHC. In this paper, the material within the innermost barrel region is studied using reconstructed hadronic in…