Search results for " Mathematical"

showing 10 items of 686 documents

Precise measurement of the neutrino mixing parameter θ23 from muon neutrino disappearance in an off-axis beam

2014

New data from the T2K neutrino oscillation experiment produce the most precise measurement of the neutrino mixing parameter theta_{23}. Using an off-axis neutrino beam with a peak energy of 0.6 GeV and a data set corresponding to 6.57 x 10^{20} protons on target, T2K has fit the energy-dependent nu_mu oscillation probability to determine oscillation parameters. Marginalizing over the values of other oscillation parameters yields sin^2 (theta_{23}) = 0.514 +0.055/-0.056 (0.511 +- 0.055), assuming normal (inverted) mass hierarchy. The best-fit mass-squared splitting for normal hierarchy is Delta m^2_{32} = (2.51 +- 0.10) x 10^{-3} eV^2/c^4 (inverted hierarchy: Delta m^2_{13} = (2.48 +- 0.10) …

Particle physicsGeneral PhysicsPhysics MultidisciplinaryMODELSGeneral Physics and AstronomyFOS: Physical sciencesMASS01 natural sciences09 EngineeringHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Physics and Astronomy (all)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]SCATTERINGMuon neutrino010306 general physicsNeutrino oscillationDETECTORMixing (physics)01 Mathematical SciencesPhysicsNeutronsScience & Technology02 Physical Sciences010308 nuclear & particles physicsScatteringOscillationhep-exPhysicsFísicaT2K CollaborationPhysical SciencesSYMMETRIESHigh Energy Physics::ExperimentNeutrinoHigh energy physics Mixing Parameter estimation Parameter extractionConfidence limit Energy dependent Neutrino oscillations Off-axis neutrino beam Oscillation parameters Oscillation probabilities Precise measurements Statistical uncertaintyBeam (structure)Energy (signal processing)
researchProduct

Measurement of the inclusive $\nu_{\mu}$ charged current cross section on iron and hydrocarbon in the T2K on-axis neutrino beam

2014

We report a measurement of the $\nu_\mu$ inclusive charged current cross sections on iron and hydrocarbon in the T2K on-axis neutrino beam. The measured inclusive charged current cross sections on iron and hydrocarbon averaged over the T2K on-axis flux with a mean neutrino energy of 1.51 GeV are $(1.444\pm0.002(stat.)_{-0.157}^{+0.189}(syst.))\times 10^{-38}\mathrm{cm}^2/\mathrm{nucleon}$, and $(1.379\pm0.009(stat.)_{-0.147}^{+0.178}(syst.))\times 10^{-38}\mathrm{cm}^2/\mathrm{nucleon}$, respectively, and their cross section ratio is $1.047\pm0.007(stat.)\pm0.035(syst.)$. These results agree well with the predictions of the neutrino interaction model, and thus we checked the correct treatme…

Particle physicsNuclear and High Energy PhysicsAstrophysics::High Energy Astrophysical PhenomenaFluxFOS: Physical sciencesAstronomy & Astrophysics7. Clean energy01 natural sciencesPhysics Particles & FieldsHigh Energy Physics - ExperimentNuclear physicsCross section (physics)Physics and Astronomy (all)High Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsNeutrino oscillationNuclear ExperimentDETECTORCharged currentMathematical Physicschemistry.chemical_classificationPhysicsScience & Technologyhep-ex010308 nuclear & particles physicsPhysicsT2K experimentFísicaHydrocarbonchemistryPhysical SciencesHigh Energy Physics::ExperimentNuclear and High Energy Physics; Mathematical Physics; Physics and Astronomy (all)NeutrinoNucleon
researchProduct

The beam and detector of the NA62 experiment at CERN

2017

NA62 is a fixed-target experiment at the CERN SPS dedicated to measurements of rare kaon decays. Such measurements, like the branching fraction of the $K^{+} \rightarrow \pi^{+} \nu \bar\nu$ decay, have the potential to bring significant insights into new physics processes when comparison is made with precise theoretical predictions. For this purpose, innovative techniques have been developed, in particular, in the domain of low-mass tracking devices. Detector construction spanned several years from 2009 to 2014. The collaboration started detector commissioning in 2014 and will collect data until the end of 2018. The beam line and detector components are described together with their early …

Particle physicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsFOS: Physical scienceslarge detector systems for particle and astroparticle physicsCalorimeters; Cherenkov detectors; Large detector systems for particle and astroparticle physics; Particle tracking detectors; Instrumentation; Mathematical PhysicsNA62 experimentTracking (particle physics)7. Clean energy01 natural sciencesParticle detectorHigh Energy Physics - ExperimentSettore FIS/04 - Fisica Nucleare e SubnucleareNONuclear physicsmathematical physicsHigh Energy Physics - Experiment (hep-ex)Calorimeters0103 physical sciencesparticle tracking detectorsDetectors and Experimental Techniques010306 general physicsParticle Physicsphysics.ins-detCalorimeters; Cherenkov detectors; large detector systems for particle and astroparticle physics; particle tracking detectors; instrumentation; mathematical physicsPhysicsinstrumentationCalorimeterLarge Hadron Collider010308 nuclear & particles physicsBranching fractionhep-exDetectorCherenkov detectorsInstrumentation and Detectors (physics.ins-det)Particle tracking detectorBeamlineLarge detector systems for particle and astroparticle physicHigh Energy Physics::ExperimentBeam (structure)Particle Physics - ExperimentCherenkov detector
researchProduct

Measurement of the c0 Baryon Lifetime

2018

We report a measurement of the lifetime of the $��_c^0$ baryon using proton-proton collision data at center-of-mass energies of 7 and 8~TeV, corresponding to an integrated luminosity of 3.0 fb$^{-1}$ collected by the LHCb experiment. The sample consists of about 1000 $��_b^-\to��_c^0��^-\bar��_�� X$ signal decays, where the $��_c^0$ baryon is detected in the $pK^-K^-��^+$ final state and $X$ represents possible additional undetected particles in the decay. The $��_c^0$ lifetime is measured to be $��_{��_c^0} = 268\pm24\pm10\pm2$ fs, where the uncertainties are statistical, systematic, and from the uncertainty in the $D^+$ lifetime, respectively. This value is nearly four times larger than, …

Particles and fieldGeneral PhysicsMesonGeneral Physics and AstronomyFOS: Physical sciences01 natural sciences7. Clean energyOmega09 EngineeringNOLuminosityHigh Energy Physics - Experiment (hep-ex)Physics and Astronomy (all)0103 physical sciencesPhysicHeavy baryonTOOLSDG 7 - Affordable and Clean EnergyLHCb - Abteilung Hinton010306 general physicsINCLUSIVE WEAK DECAYS; DISCARDING 1/N(C); RULE; TOOL01 Mathematical SciencesQuantum chromodynamicsPhysics/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energy02 Physical Sciences010308 nuclear & particles physicsQuark modelParticle physicsState (functional analysis)HEPDISCARDING 1/N(C)BaryonLHCbHadron colliderHigh Energy Physics::ExperimentINCLUSIVE WEAK DECAYSLHCAtomic physicsFísica de partículesExperimentsRULECharm physics Oscillation Flavor physics Hadron-Hadron scattering
researchProduct

Solid-solid phase transition in hard ellipsoids

2009

We present a computer simulation study of the crystalline phases of hard ellipsoids of revolution. A previous study [P. Pfleiderer and T. Schilling, Phys. Rev. E 75, 020402 (2007)]. showed that for aspect ratios a/bor=3 the previously suggested stretched-fcc phase [D. Frenkel and B. Mulder, Mol. Phys. 55, 1171 (1985)] is unstable with respect to a simple monoclinic phase with two ellipsoids of different orientations per unit cell (SM2). In order to study the stability of these crystalline phases at different aspect ratios and as a function of density we have calculated their free energies by thermodynamic integration. The integration path was sampled by an expanded ensemble method in which …

Path (topology)PhysicsPhase transitionStatistical Mechanics (cond-mat.stat-mech): Physics [G04] [Physical chemical mathematical & earth Sciences]FOS: Physical sciencesGeneral Physics and AstronomyOrder (ring theory)ThermodynamicsThermodynamic integrationFunction (mathematics)Condensed Matter - Soft Condensed MatterEllipsoid: Physique [G04] [Physique chimie mathématiques & sciences de la terre]Phase (matter)Soft Condensed Matter (cond-mat.soft)Physical and Theoretical ChemistryCondensed Matter - Statistical MechanicsMonoclinic crystal systemThe Journal of Chemical Physics
researchProduct

Pattern-Recognition: a Foundational Approach

2015

This paper aims at giving a contribution to the ongoing attempt to turn the theory of pattern-recognition into a rigorous science. In this article we address two problems which lie at the foundations of pattern-recognition theory: (i) What is a pattern? and (ii) How do we come to know patterns? In so doing much attention will be paid to tracing a non-arbitrary connection between (i) and (ii), a connection which will be ultimately based on considerations relating to Darwin’s theory of evolution.

Pattern-recognition conceptual spaces cognitive architecture Dennett GaerdenforsConceptual Spaces Mathematical Patterns Intelligent AgentsSettore M-FIL/02 - Logica E Filosofia Della Scienza
researchProduct

Object, Structure, and Form

2012

The main task of this paper is to develop the non-Platonist view of mathematics as a science of structures I have called, borrowing the label from Putnam, `realism with the human face'. According to this view, if by `object' we mean what exists independently of whether we are thinking about it or not, mathematics is a science of patterns (structures), where patterns are neither objects nor properties of objects, but aspects (or aspects of aspects, etc.) of concrete objects which dawn on us when we represent objects (or aspects of... within a given system (of representation). Mathematical patterns, therefore, are real, because they ultimately depend on concrete objects, but are neither objec…

Patterns Mathematical structuralism Abstract objects Forms of representation Systems of representation RealismSettore M-FIL/02 - Logica E Filosofia Della Scienza
researchProduct

Gravity-induced liquid crystal phase transitions of colloidal platelets.

2004

he influence of gravity on a suspension of sterically stabilized colloidal gibbsite platelets is studied. An initially isotropic-nematic biphasic sample of such a suspension develops a columnar phase on the bottom on prolonged standing. This phenomenon is described using a simple osmotic compression model. We performed Monte Carlo simulations of cut spheres with aspect ratio L/D = 1/15 and took data from the literature to supply the equations of state required for the model. We find that the model describes the observed three-phase equilibrium quite well.

Phase transitionGravity (chemistry)Materials scienceMonte Carlo method: Physics [G04] [Physical chemical mathematical & earth Sciences]General Physics and AstronomyThermodynamicsCondensed Matter::Soft Condensed MatterCrystallographyColloid: Physique [G04] [Physique chimie mathématiques & sciences de la terre]Liquid crystalSPHERESPhysical and Theoretical ChemistryColumnar phaseSuspension (vehicle)The Journal of chemical physics
researchProduct

Tuning the defect configurations in nematic and smectic liquid crystalline shells

2013

Thin liquid crystalline shells surrounding and surrounded by aqueous phases can be conveniently produced using a nested capillary microfluidic system, as was first demonstrated by Fernandez-Nieves et al. in 2007. By choosing particular combinations of stabilizers in the internal and external phases, different types of alignment, uniform or hybrid, can be ensured within the shell. Here, we investigate shells in the nematic and smectic phases under varying boundary conditions, focusing in particular on textural transformations during phase transitions, on the interaction between topological defects in the director field and inclusions in the liquid crystal (LC), and on the possibility to rel…

Phase transitionMaterials scienceCapillary actionGeneral MathematicsmicrofluidicsGeneral EngineeringShell (structure)General Physics and AstronomyRotationTopological defectCondensed Matter::Soft Condensed Matterliquid crystalsLiquid crystalChemical physicsPhase (matter): Multidisciplinary general & others [G99] [Physical chemical mathematical & earth Sciences]Boundary value problemtopological defects: Multidisciplinaire général & autres [G99] [Physique chimie mathématiques & sciences de la terre]Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
researchProduct

Study of the material of the ATLAS inner detector for Run 2 of the LHC

2017

The ATLAS inner detector comprises three different sub-detectors: the pixel detector, the silicon strip tracker, and the transition-radiation drift-tube tracker. The Insertable B-Layer, a new innermost pixel layer, was installed during the shutdown period in 2014, together with modifications to the layout of the cables and support structures of the existing pixel detector. The material in the inner detector is studied with several methods, using a low-luminosity root s = 13 TeV pp collision sample corresponding to around 2.0 nb(-1) collected in 2015 with the ATLAS experiment at the LHC. In this paper, the material within the innermost barrel region is studied using reconstructed hadronic in…

Photondrift tubePhysics::Instrumentation and Detectors13000 GeV-cmsparticle identification: efficiencyCiencias FísicasPerformance of High Energy Physics Detector01 natural sciencesHigh Energy Physics - Experiment//purl.org/becyt/ford/1 [https]Subatomär fysikHigh Energy Physics - Experiment (hep-ex)Particle tracking detectorsSubatomic Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]scattering [p p]tracking detectorGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)InstrumentationQCMathematical Physicsparticle identification [charged particle]Detector modelling and simulations I (interaction of radiation with matter interaction of photons with matter interaction of hadrons with matter etc)PhysicsLarge Hadron Colliderefficiency [particle identification]track data analysisSettore FIS/01 - Fisica SperimentaleATLAS experimentDetectorpixel [detector]interaction of photons with matterDetectorsMonte Carlo [numerical calculations]ATLASSample (graphics)interaction of hadrons with mattermedicine.anatomical_structureCERN LHC CollLHCcolliding beams [p p]numerical calculations: Monte CarloParticle Physics - ExperimentCIENCIAS NATURALES Y EXACTASp p: scatteringphoton: transition530 PhysicsCiências Naturais::Ciências FísicasInstrumentation:Ciências Físicas [Ciências Naturais]transition [photon]Detector modelling and simulations I (interaction of radiation with matterFOS: Physical sciences610charged particle: particle identificationAccelerator Physics and InstrumentationInteraction of photons with matterOpticsAtlas (anatomy)[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]0103 physical sciencesmedicinedetector: pixelInteraction of hadrons with matterHigh Energy Physicsddc:610structure010306 general physicsCiencias Exactasetc)Science & TechnologyPixelhep-ex010308 nuclear & particles physicsbusiness.industryinteraction of radiation with matterFísicasiliconAcceleratorfysik och instrumenteringDetector modelling and simulations I (interaction of radiation with matter interaction of photons with matter interaction of hadrons with matter etc); Particle tracking detectors; Performance of High Energy Physics Detectors; Instrumentation; Mathematical Physics//purl.org/becyt/ford/1.3 [https]tracksDetector modelling and simulationsParticle tracking detectorAstronomíarapidityExperimental High Energy PhysicsPerformance of High Energy Physics DetectorsHigh Energy Physics::Experimenttransition radiationbusinessDetector modelling and simulations I (interaction of radiation with matter interaction of photons with matter interaction of hadrons with matter etc)p p: colliding beamsexperimental results
researchProduct