Search results for " Mathematical"

showing 10 items of 686 documents

Anomalous partially hyperbolic diffeomorphisms I: dynamically coherent examples

2016

We build an example of a non-transitive, dynamically coherent partially hyperbolic diffeomorphism $f$ on a closed $3$-manifold with exponential growth in its fundamental group such that $f^n$ is not isotopic to the identity for all $n\neq 0$. This example contradicts a conjecture in \cite{HHU}. The main idea is to consider a well-understood time-$t$ map of a non-transitive Anosov flow and then carefully compose with a Dehn twist.

Pure mathematicsFundamental groupMathematics::Dynamical SystemsGeneral Mathematics[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS][ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS]MSc: 37D30[MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)01 natural sciencesIdentity (music)Exponential growth0103 physical sciencesFOS: MathematicsMathematics - Dynamical Systems0101 mathematicsMathematicsConjecture010102 general mathematicsClassificationMathematics::Geometric TopologyDehn twistFlow (mathematics)Partially hyperbolic diffeomorphisms010307 mathematical physicsDiffeomorphism
researchProduct

Stability conditions and related filtrations for $(G,h)$-constellations

2017

Given an infinite reductive algebraic group $G$, we consider $G$-equivariant coherent sheaves with prescribed multiplicities, called $(G,h)$-constellations, for which two stability notions arise. The first one is analogous to the $\theta$-stability defined for quiver representations by King and for $G$-constellations by Craw and Ishii, but depending on infinitely many parameters. The second one comes from Geometric Invariant Theory in the construction of a moduli space for $(G,h)$-constellations, and depends on some finite subset $D$ of the isomorphy classes of irreducible representations of $G$. We show that these two stability notions do not coincide, answering negatively a question raise…

Pure mathematicsGeneral Mathematics01 natural sciencesHarder–Narasimhan filtrationCoherent sheafModuliMathematics - Algebraic GeometryMathematics::Algebraic Geometry0103 physical sciencesFOS: MathematicsComputer Science::General Literature14D20 14L24Representation Theory (math.RT)0101 mathematicsAlgebraic Geometry (math.AG)MathematicsComputer Science::Information Retrieval010102 general mathematicsQuiverAstrophysics::Instrumentation and Methods for AstrophysicsGIT quotientComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)16. Peace & justiceModuli spaceGIT quotientStability conditionAlgebraic groupIrreducible representationMSC: 14D20 14L24010307 mathematical physicsGeometric invariant theory[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]Mathematics - Representation Theory
researchProduct

2-Potenzen der ordnung von Einheitengruppen unimodularer definiter ?-Gitter

1990

Pure mathematicsGeneral Mathematics010102 general mathematics0103 physical sciences010307 mathematical physics0101 mathematics01 natural sciencesMathematicsArchiv der Mathematik
researchProduct

Holomorphic Maps and Pencils of Circles

2008

(2008). Holomorphic Maps and Pencils of Circles. The American Mathematical Monthly: Vol. 115, No. 8, pp. 690-700.

Pure mathematicsGeneral Mathematics010102 general mathematics0103 physical sciencesHolomorphic function010307 mathematical physics0101 mathematics01 natural sciencesMathematicsThe American Mathematical Monthly
researchProduct

The Composition Operation on Spaces of Holomorphic Mappings

2020

AbstractWe discuss the continuity of the composition on several spaces of holomorphic mappings on open subsets of a complex Banach space. On the Fréchet space of entire mappings that are bounded on bounded sets, the composition turns out to be even holomorphic. In such a space, we consider linear subspaces closed under left and right composition. We discuss the relationship of such subspaces with ideals of operators and give several examples of them. We also provide natural examples of spaces of holomorphic mappings where the composition is not continuous.

Pure mathematicsGeneral Mathematics010102 general mathematics0103 physical sciencesHolomorphic function010307 mathematical physics0101 mathematicsComposition (combinatorics)01 natural sciencesMathematicsThe Quarterly Journal of Mathematics
researchProduct

Rigidity of commutators and elementary operators on Calkin algebras

1998

LetA=(A 1,...,A n ),B=(B 1,...,B n )eL(l p ) n be arbitraryn-tuples of bounded linear operators on (l p ), with 1<p<∞. The paper establishes strong rigidity properties of the corresponding elementary operators e a,b on the Calkin algebraC(l p )≡L(l p )/K(l p ); $$\varepsilon _{\alpha ,b} (s) = \sum\limits_{i = 1}^n {a_i sb_i } $$ , where quotient elements are denoted bys=S+K(l p ) forSeL(l p ). It is shown among other results that the kernel Ker(e a,b ) is a non-separable subspace ofC(l p ) whenever e a,b fails to be one-one, while the quotient $$C(\ell ^p )/\overline {\operatorname{Im} \left( {\varepsilon _{\alpha ,b} } \right)} $$ is non-separable whenever e a,b fails to be onto. These re…

Pure mathematicsGeneral Mathematics010102 general mathematicsLinear operatorsHilbert spaceCompact operator01 natural sciencesCombinatoricssymbols.namesakeBounded function0103 physical sciencessymbols010307 mathematical physics0101 mathematicsQuotientMathematicsIsrael Journal of Mathematics
researchProduct

On Serrin’s overdetermined problem in space forms

2018

We consider Serrin’s overdetermined problem for the equation $$\Delta v + nK v = -\,1$$ in space forms, where K is the curvature of the space, and we prove a symmetry result by using a P-function approach. Our approach generalizes the one introduced by Weinberger to space forms and, as in the Euclidean case, it provides a short proof of the symmetry result which does not make use of the method of moving planes.

Pure mathematicsGeneral Mathematics010102 general mathematicsMathematical analysisAlgebraic geometrySpace (mathematics)Curvature01 natural sciencesDelta-v (physics)Overdetermined systemNumber theorySettore MAT/05 - Analisi Matematica0103 physical sciencesEuclidean geometryMathematics (all)010307 mathematical physics0101 mathematicsSymmetry (geometry)Mathematics
researchProduct

On the blockwise modular isomorphism problem

2017

As a generalization of the modular isomorphism problem we study the behavior of defect groups under Morita equivalence of blocks of finite groups over algebraically closed fields of positive characteristic. We prove that the Morita equivalence class of a block B of defect at most 3 determines the defect groups of B up to isomorphism. In characteristic 0 we prove similar results for metacyclic defect groups and 2-blocks of defect 4. In the second part of the paper we investigate the situation for p-solvable groups G. Among other results we show that the group algebra of G itself determines if G has abelian Sylow p-subgroups.

Pure mathematicsGeneral Mathematics010102 general mathematicsSylow theoremsBlock (permutation group theory)Group algebra01 natural sciencesValuation ring0103 physical sciencesFOS: Mathematics010307 mathematical physicsIsomorphism0101 mathematicsAbelian groupMorita equivalenceAlgebraically closed fieldRepresentation Theory (math.RT)Mathematics - Representation TheoryMathematics
researchProduct

Solvable Extensions of Nilpotent Complex Lie Algebras of Type {2n,1,1}

2018

We investigate derivations of nilpotent complex Lie algebras of type {2n, 1, 1} with the aim to classify nilpotent complex Lie algebras the commutator ideals of which have codimension one and are nilpotent Lie algebras of type {2n, 1, 1}

Pure mathematicsGeneral Mathematics010102 general mathematicsType (model theory)01 natural sciencesNilpotentderivations of Lie algebras0103 physical sciencesLie algebraSettore MAT/03 - Geometria010307 mathematical physics0101 mathematicsNilpotent Lie algebraMathematicsMoscow Mathematical Journal
researchProduct

F-signature of pairs and the asymptotic behavior of Frobenius splittings

2012

We generalize $F$-signature to pairs $(R,D)$ where $D$ is a Cartier subalgebra on $R$ as defined by the first two authors. In particular, we show the existence and positivity of the $F$-signature for any strongly $F$-regular pair. In one application, we answer an open question of I. Aberbach and F. Enescu by showing that the $F$-splitting ratio of an arbitrary $F$-pure local ring is strictly positive. Furthermore, we derive effective methods for computing the $F$-signature and the $F$-splitting ratio in the spirit of the work of R. Fedder.

Pure mathematicsGeneral Mathematics13A35 13D40 14B05 13H10010102 general mathematicsSubalgebraLocal ringSplitting primeF-regularCommutative Algebra (math.AC)Mathematics - Commutative AlgebraF-signatureF-splitting ratio01 natural sciencesF-pureMathematics - Algebraic GeometryCartier algebra0103 physical sciencesFOS: Mathematics010307 mathematical physics0101 mathematicsSignature (topology)Algebraic Geometry (math.AG)Mathematics
researchProduct