Search results for " Mathematical"
showing 10 items of 686 documents
Anomalous partially hyperbolic diffeomorphisms I: dynamically coherent examples
2016
We build an example of a non-transitive, dynamically coherent partially hyperbolic diffeomorphism $f$ on a closed $3$-manifold with exponential growth in its fundamental group such that $f^n$ is not isotopic to the identity for all $n\neq 0$. This example contradicts a conjecture in \cite{HHU}. The main idea is to consider a well-understood time-$t$ map of a non-transitive Anosov flow and then carefully compose with a Dehn twist.
Stability conditions and related filtrations for $(G,h)$-constellations
2017
Given an infinite reductive algebraic group $G$, we consider $G$-equivariant coherent sheaves with prescribed multiplicities, called $(G,h)$-constellations, for which two stability notions arise. The first one is analogous to the $\theta$-stability defined for quiver representations by King and for $G$-constellations by Craw and Ishii, but depending on infinitely many parameters. The second one comes from Geometric Invariant Theory in the construction of a moduli space for $(G,h)$-constellations, and depends on some finite subset $D$ of the isomorphy classes of irreducible representations of $G$. We show that these two stability notions do not coincide, answering negatively a question raise…
2-Potenzen der ordnung von Einheitengruppen unimodularer definiter ?-Gitter
1990
Holomorphic Maps and Pencils of Circles
2008
(2008). Holomorphic Maps and Pencils of Circles. The American Mathematical Monthly: Vol. 115, No. 8, pp. 690-700.
The Composition Operation on Spaces of Holomorphic Mappings
2020
AbstractWe discuss the continuity of the composition on several spaces of holomorphic mappings on open subsets of a complex Banach space. On the Fréchet space of entire mappings that are bounded on bounded sets, the composition turns out to be even holomorphic. In such a space, we consider linear subspaces closed under left and right composition. We discuss the relationship of such subspaces with ideals of operators and give several examples of them. We also provide natural examples of spaces of holomorphic mappings where the composition is not continuous.
Rigidity of commutators and elementary operators on Calkin algebras
1998
LetA=(A 1,...,A n ),B=(B 1,...,B n )eL(l p ) n be arbitraryn-tuples of bounded linear operators on (l p ), with 1<p<∞. The paper establishes strong rigidity properties of the corresponding elementary operators e a,b on the Calkin algebraC(l p )≡L(l p )/K(l p ); $$\varepsilon _{\alpha ,b} (s) = \sum\limits_{i = 1}^n {a_i sb_i } $$ , where quotient elements are denoted bys=S+K(l p ) forSeL(l p ). It is shown among other results that the kernel Ker(e a,b ) is a non-separable subspace ofC(l p ) whenever e a,b fails to be one-one, while the quotient $$C(\ell ^p )/\overline {\operatorname{Im} \left( {\varepsilon _{\alpha ,b} } \right)} $$ is non-separable whenever e a,b fails to be onto. These re…
On Serrin’s overdetermined problem in space forms
2018
We consider Serrin’s overdetermined problem for the equation $$\Delta v + nK v = -\,1$$ in space forms, where K is the curvature of the space, and we prove a symmetry result by using a P-function approach. Our approach generalizes the one introduced by Weinberger to space forms and, as in the Euclidean case, it provides a short proof of the symmetry result which does not make use of the method of moving planes.
On the blockwise modular isomorphism problem
2017
As a generalization of the modular isomorphism problem we study the behavior of defect groups under Morita equivalence of blocks of finite groups over algebraically closed fields of positive characteristic. We prove that the Morita equivalence class of a block B of defect at most 3 determines the defect groups of B up to isomorphism. In characteristic 0 we prove similar results for metacyclic defect groups and 2-blocks of defect 4. In the second part of the paper we investigate the situation for p-solvable groups G. Among other results we show that the group algebra of G itself determines if G has abelian Sylow p-subgroups.
Solvable Extensions of Nilpotent Complex Lie Algebras of Type {2n,1,1}
2018
We investigate derivations of nilpotent complex Lie algebras of type {2n, 1, 1} with the aim to classify nilpotent complex Lie algebras the commutator ideals of which have codimension one and are nilpotent Lie algebras of type {2n, 1, 1}
F-signature of pairs and the asymptotic behavior of Frobenius splittings
2012
We generalize $F$-signature to pairs $(R,D)$ where $D$ is a Cartier subalgebra on $R$ as defined by the first two authors. In particular, we show the existence and positivity of the $F$-signature for any strongly $F$-regular pair. In one application, we answer an open question of I. Aberbach and F. Enescu by showing that the $F$-splitting ratio of an arbitrary $F$-pure local ring is strictly positive. Furthermore, we derive effective methods for computing the $F$-signature and the $F$-splitting ratio in the spirit of the work of R. Fedder.