Search results for " Mathematical"
showing 10 items of 686 documents
Calibrations and isoperimetric profiles
2007
We equip many noncompact nonsimply connected surfaces with smooth Riemannian metrics whose isoperimetric profile is smooth, a highly nongeneric property. The computation of the profile is based on a calibration argument, a rearrangement argument, the Bol-Fiala curvature dependent inequality, together with new results on the profile of surfaces of revolution and some hardware know-how.
A note on the uniqueness result for the inverse Henderson problem
2019
The inverse Henderson problem of statistical mechanics is the theoretical foundation for many bottom-up coarse-graining techniques for the numerical simulation of complex soft matter physics. This inverse problem concerns classical particles in continuous space which interact according to a pair potential depending on the distance of the particles. Roughly stated, it asks for the interaction potential given the equilibrium pair correlation function of the system. In 1974, Henderson proved that this potential is uniquely determined in a canonical ensemble and he claimed the same result for the thermodynamical limit of the physical system. Here, we provide a rigorous proof of a slightly more …
Isotropic-nematic interface in suspensions of hard rods: Mean-field properties and capillary waves
2006
We present a study of the isotropic-nematic interface in a system of hard spherocylinders. First we compare results from Monte Carlo simulations and Onsager density functional theory for the interfacial profiles of the orientational order parameter and the density. Those interfacial properties that are not affected by capillary waves are in good agreement, despite the fact that Onsager theory overestimates the coexistence densities. Then we show results of a Monte Carlo study of the capillary waves of the interface. In agreement with recent theoretical investigations (Eur.Phys.J. E {\bf 18} 407 (2005)) we find a strongly anistropic capillary wave spectrum. For the wave-numbers accessed in o…
Uniformization with infinitesimally metric measures
2019
We consider extensions of quasiconformal maps and the uniformization theorem to the setting of metric spaces $X$ homeomorphic to $\mathbb R^2$. Given a measure $\mu$ on such a space, we introduce $\mu$-quasiconformal maps $f:X \to \mathbb R^2$, whose definition involves deforming lengths of curves by $\mu$. We show that if $\mu$ is an infinitesimally metric measure, i.e., it satisfies an infinitesimal version of the metric doubling measure condition of David and Semmes, then such a $\mu$-quasiconformal map exists. We apply this result to give a characterization of the metric spaces admitting an infinitesimally quasisymmetric parametrization.
PT Symmetry and Weyl Asymptotics
2012
For a class of PT-symmetric operators with small random perturbations, the eigenvalues obey Weyl asymptotics with probability close to 1. Consequently, when the principal symbol is nonreal, there are many nonreal eigenvalues.
Permutability of injectors with a central socle in a finite solvable group
2017
In response to an Open Question of Doerk and Hawkes [5, IX Section 3, page 615], we shall show that if Zπ is the Fitting class formed by the finite solvable groups whose π-socle is central (where π is a set of prime numbers), then the Zπ-injectors of a finite solvable group G permute with the members of a Sylow basis in G. The proof depends on the properties of certain extraspecial groups [4].
Overlapping self-affine sets of Kakeya type
2009
We compute the Minkowski dimension for a family of self-affine sets on the plane. Our result holds for every (rather than generic) set in the class. Moreover, we exhibit explicit open subsets of this class where we allow overlapping, and do not impose any conditions on the norms of the linear maps. The family under consideration was inspired by the theory of Kakeya sets.
Separation conditions on controlled Moran constructions
2017
It is well known that the open set condition and the positivity of the $t$-dimensional Hausdorff measure are equivalent on self-similar sets, where $t$ is the zero of the topological pressure. We prove an analogous result for a class of Moran constructions and we study different kinds of Moran constructions with this respect.
Correspondence between some metabelian varieties and left nilpotent varieties
2021
Abstract In the class of left nilpotent algebras of index two it was proved that there are no varieties of fractional polynomial growth ≈ n α with 1 α 2 and 2 α 3 instead it was established the existence of a variety of fractional polynomial growth with α = 7 2 . In this paper we investigate similar problems for varieties of commutative or anticommutative metabelian algebras. We construct a correspondence between left nilpotent algebras of index two and commutative metabelian algebras or anticommutative metabelian algebras and we prove that the codimensions sequences of the corresponding algebras coincide up to a constant. This allows us to transfer the above results concerning varieties of…
Positivity, complex FIOs, and Toeplitz operators
2018
International audience; We establish a characterization of complex linear canonical transformations that are positive with respect to a pair of strictly plurisubharmonic quadratic weights. As an application, we show that the boundedness of a class of Toeplitz operators on the Bargmann space is implied by the boundedness of their Weyl symbols.