Search results for " Multiplication"

showing 10 items of 49 documents

A recurrence-free variant of strassen’s algorithm on hypercube

1995

In this paper a non-recursive Strassen’s matrix multiplication algorithm is presented. This new algorithm is suitable to run on parallel environments. Two computational schemes have been worked out exploiting different parallel approaches on hypercube architecture. A comparative analysis is reported. The experiments have been carried out on an nCUBE-2 supercomputer, housed at CNUCE in Pisa, supporting the Express parallel operating system. © 1995, Taylor & Francis Group, LLC. All rights reserved.

Matrix multiplicationGeneral Computer ScienceComputer scienceExpress operating systemComputer Science (all)Parallel computingStrassen’s algorithmSupercomputerMatrix multiplicationStrassen algorithmHypercube architectureHypercubeAlgorithmHypercube architecture
researchProduct

Development of a module of stacks of air-breathing microbial fuel cells to light-up a strip of LEDs

2018

Abstract This work focuses on scaling-up of the microbial fuel cells technology according to the principle of miniaturization and multiplication. Seven stacks of 16 mini-MFCs (electrodic area of 0.866 cm2) were built up leading to a big module of 112 MFCs. The electrical connection among the MFCs in the stacks and among the stacks into the modules was optimized in order to implement this technology. Results show that 1 MFC generates 1.22 mW while the optimization of the electric connection in order to achieve the maximum power results in 6.62 mW compared to the theoretical 182 mW, indicating the existence of large energy losses in the system. However, to light a LED there is not a threshold…

Microbial fuel cellMaterials scienceMaximum power principlebusiness.industryGeneral Chemical EngineeringCombustiblesElectrical engineering02 engineering and technology010501 environmental sciences021001 nanoscience & nanotechnology01 natural sciencesElectrical connectionPower (physics)law.inventionElectroquímicaStack (abstract data type)lawElectrochemistryMiniaturizationMicrobial fuel cell Miniaturization Multiplication Stack Electrical connection LED0210 nano-technologybusiness0105 earth and related environmental sciencesLight-emitting diodeVoltage
researchProduct

Experimental Study of Six Different Implementations of Parallel Matrix Multiplication on Heterogeneous Computational Clusters of Multicore Processors

2010

Two strategies of distribution of computations can be used to implement parallel solvers for dense linear algebra problems for Heterogeneous Computational Clusters of Multicore Processors (HCoMs). These strategies are called Heterogeneous Process Distribution Strategy (HPS) and Heterogeneous Data Distribution Strategy (HDS). They are not novel and have been researched thoroughly. However, the advent of multicores necessitates enhancements to them. In this paper, we present these enhancements. Our study is based on experiments using six applications to perform Parallel Matrix-matrix Multiplication (PMM) on an HCoM employing the two distribution strategies.

Multi-core processorParallel processing (DSP implementation)Computer scienceComputationLinear algebraParallel algorithmConcurrent computingMultiplicationParallel computingMatrix multiplication2010 18th Euromicro Conference on Parallel, Distributed and Network-based Processing
researchProduct

Multi-label classification using boolean matrix decomposition

2012

This paper introduces a new multi-label classifier based on Boolean matrix decomposition. Boolean matrix decomposition is used to extract, from the full label matrix, latent labels representing useful Boolean combinations of the original labels. Base level models predict latent labels, which are subsequently transformed into the actual labels by Boolean matrix multiplication with the second matrix from the decomposition. The new method is tested on six publicly available datasets with varying numbers of labels. The experimental evaluation shows that the new method works particularly well on datasets with a large number of labels and strong dependencies among them.

Multi-label classificationMatrix (mathematics)ComputingMethodologies_PATTERNRECOGNITIONComputer sciencebusiness.industryBoolean matrix multiplicationLogical matrixPattern recognitionArtificial intelligencebusinessClassifier (UML)Sparse matrixProceedings of the 27th Annual ACM Symposium on Applied Computing
researchProduct

Response determination of linear dynamical systems with singular matrices: A polynomial matrix theory approach

2017

Abstract An approach is developed based on polynomial matrix theory for formulating the equations of motion and for determining the response of multi-degree-of-freedom (MDOF) linear dynamical systems with singular matrices and subject to linear constraints. This system modeling may appear for reasons such as utilizing redundant DOFs, and can be advantageous from a computational cost perspective, especially for complex (multi-body) systems. The herein developed approach can be construed as an alternative to the recently proposed methodology by Udwadia and coworkers, and has the significant advantage that it circumvents the use of pseudoinverses in determining the system response. In fact, ba…

Multibody system0209 industrial biotechnologyMathematical optimizationPolynomialApplied Mathematics02 engineering and technologyLinear constrained structural/mechanical systemPolynomial matrix theoryMatrix multiplicationPolynomial matrixMatrix polynomialLinear dynamical systemMatrix (mathematics)020303 mechanical engineering & transports020901 industrial engineering & automation0203 mechanical engineeringMatrix splittingModeling and SimulationApplied mathematicsMatrix analysisClosed form solutionSingular matrixMathematics
researchProduct

Multipactor Mitigation in Coaxial Lines by Means of Permanent Magnets

2014

The main aim of this paper is the analysis of the feasibility of employing permanent magnets for the multipactor mitigation in a coaxial waveguide. First, the study of a coaxial line immersed in a uniform axial magnetic field shows that multipactor can be suppressed at any RF if the external magnetic field is strong enough. Both theoretical simulations and experimental tests validate this statement. Next, multipactor breakdown of a coaxial line immersed in a hollow cylindrical permanent magnet is analyzed. Numerical simulations show that multipactor can be suppressed in a certain RF range. The performed experimental test campaign demonstrates the capability of the magnet to avoid the multip…

Multipactor effectMaterials scienceElectron multiplicationbusiness.industryElectrical engineeringRF breakdownPACTORAccelerators and Storage RingsElectronic Optical and Magnetic MaterialsMagnetic fieldPermanent magnetOpticsDC magnetic fieldMagnetTEORIA DE LA SEÑAL Y COMUNICACIONESCoaxial waveguidesCoaxial lineMultipactor effectCoaxial waveguideElectrical and Electronic EngineeringMultipactor mitigationbusinessIEEE Transactions on Electron Devices
researchProduct

Electron drift properties in high pressure gaseous xenon

2018

[EN] Gaseous time projection chambers (TPC) are a very attractive detector technology for particle tracking. Characterization of both drift velocity and di¿usion is of great importance to correctly assess their tracking capabilities. NEXT-White is a High Pressure Xenon gas TPC with electroluminescent ampli¿cation, a 1:2 scale model of the future NEXT-100detector, which will be dedicated to neutrinoless double beta decay searches. NEXT-White has been operating at Canfranc Underground Laboratory (LSC) since December2016. The drift parameters have been measured using 83mKr for a range of reduced drift ¿elds at two di¿erent pressure regimes, namely 7.2 bar and 9.1 bar. Theresults have been comp…

Physics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsLibrary scienceFOS: Physical sciencesCharge transport01 natural sciences7. Clean energyElectron driftHigh Energy Physics - ExperimentTECNOLOGIA ELECTRONICAHigh Energy Physics - Experiment (hep-ex)Political science0103 physical sciencesmedia_common.cataloged_instanceEuropean unionNuclear Experiment (nucl-ex)010306 general physicsInstrumentationNuclear ExperimentMathematical Physicsmedia_commonCharge transport and multiplication in gas010308 nuclear & particles physicsEuropean researchMultiplication and electroluminescence in rare gases and liquidsInstrumentation and Detectors (physics.ins-det)Double-beta decay detectorsGaseous imaging and tracking detectorsHigh pressureHigh Energy Physics::ExperimentJournal of Instrumentation
researchProduct

Drude weight increase by orbital and repulsive interactions in fermionic ladders

2019

In strictly one-dimensional systems, repulsive interactions tend to reduce particle mobility on a lattice. Therefore, the Drude weight, controlling the divergence at zero-frequency of optical conductivities in perfect conductors, is lower than in non-interacting cases. We show that this is not the case when extending to quasi one-dimensional ladder systems. Relying on bosonization, perturbative and matrix product states (MPS) calculations, we show that nearest-neighbor interactions and magnetic fluxes provide a bias between back- and forward-scattering processes, leading to linear corrections to the Drude weight in the interaction strength. As a consequence, Drude weights counter-intuitivel…

PhysicsBosonizationCondensed Matter::Quantum GasesCondensed matter physicsStrongly Correlated Electrons (cond-mat.str-el)Interaction strengthFOS: Physical sciencesddc:500.201 natural sciencesMatrix multiplication010305 fluids & plasmasCondensed Matter - Strongly Correlated ElectronsUltracold atomQuantum Gases (cond-mat.quant-gas)Lattice (order)0103 physical sciencesParticleddc:530Edge states010306 general physicsCondensed Matter - Quantum Gases
researchProduct

Renormalization group flows for Wilson-Hubbard matter and the topological Hamiltonian

2019

Understanding the robustness of topological phases of matter in the presence of interactions poses a difficult challenge in modern condensed matter, showing interesting connections to high energy physics. In this work, we leverage these connections to present a complete analysis of the continuum long-wavelength description of a generic class of correlated topological insulators: Wilson-Hubbard topological matter. We show that a Wilsonian renormalization group (RG) approach, combined with the so-called topological Hamiltonian, provide a quantitative route to understand interaction-induced topological phase transitions that occur in Wilson-Hubbard matter. We benchmark two-loop RG predictions …

PhysicsPhase transitionQuantum PhysicsStrongly Correlated Electrons (cond-mat.str-el)FOS: Physical sciences02 engineering and technologyRenormalization group021001 nanoscience & nanotechnologyTopology01 natural sciencesMatrix multiplicationsymbols.namesakeCondensed Matter - Strongly Correlated ElectronsQuantum Gases (cond-mat.quant-gas)Topological insulator0103 physical sciencessymbolsddc:530Quantum Physics (quant-ph)010306 general physics0210 nano-technologyHamiltonian (quantum mechanics)Condensed Matter - Quantum Gases
researchProduct

Entanglement in Gaussian matrix-product states

2006

Gaussian matrix product states are obtained as the outputs of projection operations from an ancillary space of M infinitely entangled bonds connecting neighboring sites, applied at each of N sites of an harmonic chain. Replacing the projections by associated Gaussian states, the 'building blocks', we show that the entanglement range in translationally-invariant Gaussian matrix product states depends on how entangled the building blocks are. In particular, infinite entanglement in the building blocks produces fully symmetric Gaussian states with maximum entanglement range. From their peculiar properties of entanglement sharing, a basic difference with spin chains is revealed: Gaussian matrix…

PhysicsQuantum PhysicsStatistical Mechanics (cond-mat.stat-mech)GaussianFOS: Physical sciencesMathematical Physics (math-ph)Quantum entanglementQuantum PhysicsQuantum numberSquashed entanglementMultipartite entanglementAtomic and Molecular Physics and OpticsProjection (linear algebra)Matrix multiplicationsymbols.namesakeQuantum mechanicssymbolsQuantum Physics (quant-ph)Quantum information scienceCondensed Matter - Statistical MechanicsMathematical PhysicsOptics (physics.optics)Physics - Optics
researchProduct