Search results for " Multiplication"

showing 10 items of 49 documents

Entanglement continuous unitary transformations

2016

Continuous unitary transformations are a powerful tool to extract valuable information out of quantum many-body Hamiltonians, in which the so-called flow equation transforms the Hamiltonian to a diagonal or block-diagonal form in second quantization. Yet, one of their main challenges is how to approximate the infinitely-many coupled differential equations that are produced throughout this flow. Here we show that tensor networks offer a natural and non-perturbative truncation scheme in terms of entanglement. The corresponding scheme is called "entanglement-CUT" or eCUT. It can be used to extract the low-energy physics of quantum many-body Hamiltonians, including quasiparticle energy gaps. We…

PhysicsQuantum PhysicsStrongly Correlated Electrons (cond-mat.str-el)High Energy Physics - Lattice (hep-lat)FOS: Physical sciencesGeneral Physics and AstronomyQuantum entanglement01 natural sciencesSecond quantizationMatrix multiplication010305 fluids & plasmasCondensed Matter - Strongly Correlated Electronssymbols.namesakeTheoretical physicsHigh Energy Physics - Lattice0103 physical sciencesThermodynamic limitsymbolsIsing modelQuantum Physics (quant-ph)010306 general physicsHamiltonian (quantum mechanics)QuantumPotts modelEPL (Europhysics Letters)
researchProduct

Simulation of matrix product states for dissipation and thermalization dynamics of open quantum systems

2020

Abstract We transform the system/reservoir coupling model into a one-dimensional semi-infinite discrete chain through unitary transformation to simulate the open quantum system numerically with the help of time evolving block decimation (TEBD) algorithm. We apply the method to study the dynamics of dissipative systems. We also generate the thermal state of a multimode bath using minimally entangled typical thermal state (METTS) algorithm, and investigate the impact of the thermal bath on an empty system. For both cases, we give an extensive analysis of the impact of the modeling and simulation parameters, and compare the numerics with the analytics.

Physicsopen quantum systemthermal bathDynamics (mechanics)General Physics and AstronomyDissipationtime-evolving block decimation algorithm01 natural sciences114 Physical sciencesMatrix multiplication010305 fluids & plasmasOpen quantum systemThermalisationQuantum mechanicsalgoritmit0103 physical sciencesminimally entangled typical thermal stateskvanttifysiikka010306 general physicsQuantum
researchProduct

The positioning system of the ANTARES Neutrino Telescope

2012

The ANTARES neutrino telescope, located 40km off the coast of Toulon in the Mediterranean Sea at a mooring depth of about 2475m, consists of twelve detection lines equipped typically with 25 storeys. Every storey carries three optical modules that detect Cherenkov light induced by charged secondary particles (typically muons) coming from neutrino interactions. As these lines are flexible structures fixed to the sea bed and held taut by a buoy, sea currents cause the lines to move and the storeys to rotate. The knowledge of the position of the optical modules with a precision better than 10cm is essential for a good reconstruction of particle tracks. In this paper the ANTARES positioning sys…

Positioning systemDetector control systems (detector and experiment monitoring and slow-control systems architecture hardware algorithms databases)Detector modelling and simulations II (electric fieldsDetector alignment and calibration methods (lasers sources particle-beams)01 natural sciencesTiming detectorshardwareDetector alignment and calibration methods010303 astronomy & astrophysicsInstrumentationDETECTOR ALIGMENTMathematical PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSOUND[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]Orientation (computer vision)[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]DetectorAstrophysics::Instrumentation and Methods for AstrophysicsTriangulation (computer vision)particle-beams)GeodesyDETECTOR CONTROL SYSTEMDetector modelling and simulations II (electric fields charge transport multiplication and induction pulse formation electron emission etc)Física nuclearNeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical Phenomenadatabases)sources[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]pulse formationarchitecture[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesddc:500.2DETECTOR MODELLING AND SIMULATIONSDetector modelling and simulations IIalgorithmsPhysics::Geophysics0103 physical sciences14. Life underwaterInstrumentation and Methods for Astrophysics (astro-ph.IM)Cherenkov radiationetc)multiplication and inductionBuoyDetector control systems010308 nuclear & particles physicsDetector control systems (detector and experiment monitoring and slow-control systemsMooringcharge transport[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Detector alignment and calibration methods (laserselectron emissionFISICA APLICADAdetector modelling and simulations ii (electric fields; antares neutrino telescope; multiplication and induction; charge transport; pulse formation; electron emission; etc); hardware; architecture; timing detectors; detector control systems (detector and experiment monitoring and slow-control systems; algorithms; databases); sources; detector alignment; calibration.; acoustic positioning; detector alignment and calibration methods (lasers; particle-beams)
researchProduct

Star-product approach to quantum field theory: The free scalar field

1990

The star-quantization of the free scalar field is developed by introducing an integral representation of the normal star-product. A formal connection between the Feynman path integral in the holomorphic representation and the star-exponential is established for the interacting scalar fields.

Scalar field theoryMathematical analysisSurface integralScalar (mathematics)Line integralScalar theories of gravitationStatistical and Nonlinear PhysicsScalar potentialAstrophysics::Cosmology and Extragalactic AstrophysicsScalar multiplicationAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsScalar fieldAstrophysics::Galaxy AstrophysicsMathematical PhysicsMathematicsMathematical physicsLetters in Mathematical Physics
researchProduct

The Oort conjecture on Shimura curves in the Torelli locus of hyperelliptic curves

2017

Abstract Oort has conjectured that there do not exist Shimura varieties of dimension >0 contained generically in the Torelli locus of genus-g curves when g is sufficiently large. In this paper we prove the analogue of this conjecture for Shimura curves with respect to the hyperelliptic Torelli locus of genus g > 7 .

Shimura varietyPure mathematicsConjectureMathematics::Number TheoryApplied MathematicsGeneral Mathematics010102 general mathematics05 social sciencesComplex multiplicationMathematics::Geometric Topology01 natural sciencesTorelli theoremAlgebraMathematics::Algebraic Geometry0502 economics and business0101 mathematicsLocus (mathematics)050203 business & managementMathematicsJournal de Mathématiques Pures et Appliquées
researchProduct

Periodic time-domain modulation for the electrically tunable control of optical pulse train envelope and repetition rate multiplication

2012

An electrically tunable system for the control of optical pulse sequences is proposed and demonstrated. It is based on the use of an electrooptic modulator for periodic phase modulation followed by a dispersive device to obtain the temporal Talbot effect. The proposed configuration allows for repetition rate multiplication with different multiplication factors and with the simultaneous control of the pulse train envelope by simply changing the electrical signal driving the modulator. Simulated and experimental results for an input optical pulse train of 10 GHz are shown for different multiplication factors and envelope shapes. © 2006 IEEE.

Signal processingElectrically tunableMultiplication factorElectrical signalPhysics::Optics02 engineering and technologyOptical signal processingSimultaneous control01 natural sciencesOptical pulse train010309 opticsQ switched lasers020210 optoelectronics & photonicsOptics0103 physical sciencesTEORIA DE LA SEÑAL Y COMUNICACIONES0202 electrical engineering electronic engineering information engineeringTalbot effectPulse waveOptical fibersTime domainOptical fiber dispersionElectrical and Electronic EngineeringTemporal Talbot effectsEnvelope (waves)PhysicsTelecomunicacionesDispersive devicesRepetition rate multiplicationbusiness.industryOptical pulse shapingAtomic and Molecular Physics and OpticsPulse (physics)Optical signalsPhase modulationModulationTemporal Talbot effectElectro-optic modulatorsPulse trainOptical pulse sequencesDiffraction gratingsMultiplicationElectrónicaTime domainbusinessPhase modulation
researchProduct

CUDA-enabled Sparse Matrix–Vector Multiplication on GPUs using atomic operations

2013

We propose the Sliced Coordinate Format (SCOO) for Sparse Matrix-Vector Multiplication on GPUs.An associated CUDA implementation which takes advantage of atomic operations is presented.We propose partitioning methods to transform a given sparse matrix into SCOO format.An efficient Dual-GPU implementation which overlaps computation and communication is described.Extensive performance comparisons of SCOO compared to other formats on GPUs and CPUs are provided. Existing formats for Sparse Matrix-Vector Multiplication (SpMV) on the GPU are outperforming their corresponding implementations on multi-core CPUs. In this paper, we present a new format called Sliced COO (SCOO) and an efficient CUDA i…

SpeedupComputer Networks and CommunicationsComputer scienceSparse matrix-vector multiplicationParallel computingComputer Graphics and Computer-Aided DesignTheoretical Computer ScienceMatrix (mathematics)CUDAArtificial IntelligenceHardware and ArchitectureBenchmark (computing)MultiplicationGeneral-purpose computing on graphics processing unitsSoftwareSparse matrixParallel Computing
researchProduct

Steiner Loops of Affine Type

2020

Steiner loops of affine type are associated to arbitrary Steiner triple systems. They behave to elementary abelian 3-groups as arbitrary Steiner Triple Systems behave to affine geometries over GF(3). We investigate algebraic and geometric properties of these loops often in connection to configurations. Steiner loops of affine type, as extensions of normal subloops by factor loops, are studied. We prove that the multiplication group of every Steiner loop of affine type with n elements is contained in the alternating group An and we give conditions for those loops having An as their multiplication groups (and hence for the loops being simple).

Steiner triple systems steiner loops of affine type multiplication groups of loops finite geometries commutative Moufang loop.Settore MAT/03 - Geometria
researchProduct

Higher order matrix differential equations with singular coefficient matrices

2015

In this article, the class of higher order linear matrix differential equations with constant coefficient matrices and stochastic process terms is studied. The coefficient of the highest order is considered to be singular; thus, rendering the response determination of such systems in a straightforward manner a difficult task. In this regard, the notion of the generalized inverse of a singular matrix is used for determining response statistics. Further, an application relevant to engineering dynamics problems is included.

Stochastic partial differential equationMatrix (mathematics)Constant coefficientsSingular solutionComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONMathematical analysisMathematicsofComputing_NUMERICALANALYSISMatrix analysisCoefficient matrixDifferential algebraic equationMatrix multiplicationMathematicsAIP Conference Proceedings
researchProduct

Geometric deformation measurement and correction applied to dynamic streak camera images

2002

The complete procedure of measuring and correcting geometric deformations encountered with dynamic streak camera images in the picosecond range is presented and discussed. First, we describe the experimental setup derived from the well known spacing calibration grid method. The implemented measurement bench, adapted to time-resolved 1D imaging, notably exhibits a great accuracy and repeatability both in space and time thanks to a three-axis motorized translation stage and programmable delay lines. Second, we examine image restoration by two different analytical transform means (local versus global): results and performances of both are compared. Then we deal with final image reconstruction …

Streak camerabusiness.industryApplied MathematicsGrid method multiplicationImage processingIterative reconstructionTranslation (geometry)OpticsCalibrationComputer visionArtificial intelligencebusinessSpline interpolationInstrumentationEngineering (miscellaneous)Image restorationMathematicsMeasurement Science and Technology
researchProduct