Search results for " NANOSTRUCTURES"
showing 10 items of 128 documents
Prospective Cancer Therapies Using Stimuli‐Responsive DNA Nanostructures
2021
Financial support by the Emil Aaltonen Foundation, the Sigrid Jusélius Foundation, the Magnus Ehrnrooth Foundation, Academy of Finland (grants no. 317042 and 331151), the Jane and Aatos Erkko Foundation and the Vilho, Yrjö and Kalle Väisälä Foundation of the Finnish Academy of Science and Letters is gratefully acknowledged Nanostructures based on DNA self-assembly present an innovative way to address the increasing need for target-specific delivery of therapeutic molecules. Currently, most of the chemotherapeutics being used in clinical practice have undesired and exceedingly high off-target toxicity. This is a challenge in particular for small molecules, and hence, developing robust and ef…
Supramolecular silver polyoxometalate architectures direct the growth of composite semiconducting nanostructures.
2009
Nanosilver on a string: Crystalline silver polyoxovanadate supramolecular architectures are employed as precursors for the synthesis of composite nanowires (see scheme). The nanostructures are composed of semiconducting vanadium oxide which forms wires with high aspect ratios, and are embedded with metallic silver nanoparticles. © 2009 Wiley-VCH Verlag GmbH & Co. KCaA.
Porous Anodic Alumina as template for the cathodic electrodeposition of oxide and hydroxide nanostructures
2009
Constructing Large 2D Lattices Out of DNA-Tiles.
2021
The predictable nature of deoxyribonucleic acid (DNA) interactions enables assembly of DNA into almost any arbitrary shape with programmable features of nanometer precision. The recent progress of DNA nanotechnology has allowed production of an even wider gamut of possible shapes with high-yield and error-free assembly processes. Most of these structures are, however, limited in size to a nanometer scale. To overcome this limitation, a plethora of studies has been carried out to form larger structures using DNA assemblies as building blocks or tiles. Therefore, DNA tiles have become one of the most widely used building blocks for engineering large, intricate structures with nanometer precis…
Geometrical control of pure spin current induced domain wall depinning.
2017
[EN] We investigate the pure spin-current assisted depinning of magnetic domain walls in half ring based Py/Al lateral spin valve structures. Our optimized geometry incorporating a patterned notch in the detector electrode, directly below the Al spin conduit, provides a tailored pinning potential for a transverse domain wall and allows for a precise control over the magnetization configuration and as a result the domain wall pinning. Due to the patterned notch, we are able to study the depinning field as a function of the applied external field for certain applied current densities and observe a clear asymmetry for the two opposite field directions. Micromagnetic simulations show that this …
Inorganic/organic hybrid nanoparticles synthesized in a two-step radiation-driven process
2022
In this work, we have synthesized inorganic-organic hybrid nanoparticles via radiation synthesis of inorganic nanoparticles (Ag and CeO2) in aqueous dispersions containing radiation-synthesized poly(N-vinyl pyrrolidone) (PVP) nanogels (NG). The experiments show that there are strong interactions between the inorganic precursors (Ag+ and Ce3+) and the nanogel prior to irradiation. The two hybrid systems (Ag/NG and CeO2/NG) were characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM). XRD confirms the formation of crystalline Ag and CeO2. TEM reveals that the inorganic nanoparticles are evenly distributed in/on the nanogel. Both XRD and TEM show that size of the…
Three-Dimensional Superconducting Nanohelices Grown by He+-Focused-Ion-Beam Direct Writing
2019
Novel schemes based on the design of complex three-dimensional (3D) nanoscale architectures are required for the development of the next generation of advanced electronic components. He+ focused-ion-beam (FIB) microscopy in combination with a precursor gas allows one to fabricate 3D nanostructures with an extreme resolution and a considerably higher aspect ratio than FIB-based methods, such as Ga+ FIB-induced deposition, or other additive manufacturing technologies. In this work, we report the fabrication of 3D tungsten carbide nanohelices with on-demand geometries via controlling key deposition parameters. Our results show the smallest and highest-densely packed nanohelix ever fabricated s…