Search results for " NEURAL NETWORKS"
showing 10 items of 390 documents
Machine Learning-Based Classification of Vector Vortex Beams.
2020
Structured light is attracting significant attention for its diverse applications in both classical and quantum optics. The so-called vector vortex beams display peculiar properties in both contexts due to the non-trivial correlations between optical polarization and orbital angular momentum. Here we demonstrate a new, flexible experimental approach to the classification of vortex vector beams. We first describe a platform for generating arbitrary complex vector vortex beams inspired to photonic quantum walks. We then exploit recent machine learning methods -- namely convolutional neural networks and principal component analysis -- to recognize and classify specific polarization patterns. O…
Development of handcrafted and deep based methods for face and facial expression recognition
2021
The research objectives of this thesis concern the development of new concepts for image segmentation and region classification for image analysis. This involves implementing new descriptors, whether color, texture, or shape, to characterize regions and propose new deep learning architectures for the various applications linked to facial analysis. We restrict our focus on face recognition and person-independent facial expressions classification tasks, which are more challenging, especially in unconstrained environments. Our thesis lead to the proposal of many contributions related to facial analysis based on handcrafted and deep architecture.We contributed to face recognition by an effectiv…
Modeling the insect mushroom bodies: application to a delayed match-to-sample task.
2013
Despite their small brains, insects show advanced capabilities in learning and task solving. Flies, honeybees and ants are becoming a reference point in neuroscience and a main source of inspiration for autonomous robot design issues and control algorithms. In particular, honeybees demonstrate to be able to autonomously abstract complex associations and apply them in tasks involving different sensory modalities within the insect brain. Mushroom Bodies (MBs) are worthy of primary attention for understanding memory and learning functions in insects. In fact, even if their main role regards olfactory conditioning, they are involved in many behavioral achievements and learning capabilities, as …
Structural Health Monitoring Procedure for Composite Structures through the use of Artifcial Neural Networks
2015
In this paper different architectures of Artifcial Neural Networks (ANNs) for structural damage detection are studied. The main objective is to investigate an ANN able to detect and localize damage without any prior knowledge on its characteristics so as to serve as a real-time data processor for Structural Health Monitoring (SHM) systems. Two different architectures are studied: the standard feed-forward Multi Layer Perceptron (MLP) and the Radial Basis Function (RBF) ANNs. The training data are given, in terms of a Damage Index =D, properly defined using a piezoelectric sensor signal output to obtain suitable information on the damage position and dimensions. The electromechanical respons…
Stochastic Vulnerability Assessment of Masonry Structures: Concepts, Modeling and Restoration Aspects
2019
A methodology aiming to predict the vulnerability of masonry structures under seismic action is presented herein. Masonry structures, among which many are cultural heritage assets, present high vulnerability under earthquake. Reliable simulations of their response to seismic stresses are exceedingly difficult because of the complexity of the structural system and the anisotropic and brittle behavior of the masonry materials. Furthermore, the majority of the parameters involved in the problem such as the masonry material mechanical characteristics and earthquake loading characteristics have a stochastic-probabilistic nature. Within this framework, a detailed analytical methodological approac…
Early prediction of COVID-19 outcome using artificial intelligence techniques and only five laboratory indices
2022
We aimed to develop a prediction model for intensive care unit (ICU) hospitalization of Coronavirus disease-19 (COVID-19) patients using artificial neural networks (ANN). We assessed 25 laboratory parameters at first from 248 consecutive adult COVID-19 patients for database creation, training, and development of ANN models. We developed a new alpha-index to assess association of each parameter with outcome. We used 166 records for training of computational simulations (training), 41 for documentation of computational simulations (validation), and 41 for reliability check of computational simulations (testing). The first five laboratory indices ranked by importance were Neutrophil-to-lymphoc…
Exploiting deep learning algorithms and satellite image time series for deforestation prediction
2022
In recent years, we have witnessed the emergence of Deep Learning (DL) methods, which have led to enormous progress in various fields such as automotive driving, computer vision, medicine, finances, and remote sensing data analysis. The success of these machine learning methods is due to the ever-increasing availability of large amounts of information and the computational power of computers. In the field of remote sensing, we now have considerable volumes of satellite images thanks to the large number of Earth Observation (EO) satellites orbiting the planet. With the revisit time of satellites over an area becoming shorter and shorter, it will probably soon be possible to obtain daily imag…
Highly Performant, Deep Neural Networks with sub-microsecond latency on FPGAs for Trigger Applications
2020
Artificial neural networks are becoming a standard tool for data analysis, but their potential remains yet to be widely used for hardware-level trigger applications. Nowadays, high-end FPGAs, often used in low-level hardware triggers, offer theoretically enough performance to include networks of considerable size. This makes it very promising and rewarding to optimize a neural network implementation for FPGAs in the trigger context. Here an optimized neural network implementation framework is presented, which typically reaches 90 to 100% computational efficiency, requires few extra FPGA resources for data flow and controlling, and allows latencies in the order of 10s to few 100s of nanoseco…
Neural Classification of HEP Experimental Data
2009
High Energy Physics (HEP) experiments require discrimination of a few interesting events among a huge number of background events generated during an experiment. Hierarchical triggering hardware architectures are needed to perform this tasks in real-time. In this paper three neural network models are studied as possible candidate for such systems. A modified Multi-Layer Perception (MLP) architecture and a E alpha Net architecture are compared against a traditional MLP Test error below 25% is archived by all architectures in two different simulation strategies. E alpha Net performance are 1 to 2% better on test error with respect to the other two architectures using the smaller network topol…
Prediction of surface treatment effects on the tribological performance of tool steels using artificial neural networks
2019
The present paper discussed the development of a reliable and robust artificial neural network (ANN) capable of predicting the tribological performance of three highly alloyed tool steel grades. Experimental results were obtained by performing plane-contact sliding tests under non-lubrication conditions on a pin-on-disk tribometer. The specimens were tested both in untreated state with different hardening levels, and after surface treatment of nitrocarburizing. We concluded that wear maps via ANN modeling were a user-friendly approach for the presentation of wear-related information, since they easily permitted the determination of areas under steady-state wear that were appropriate for use…