Search results for " NEUTRINO TELESCOPE"

showing 7 items of 27 documents

Search for Neutrino-Induced Cascades with AMANDA

2004

We report on a search for electro-magnetic and/or hadronic showers (cascades) induced by high energy neutrinos in the data collected with the AMANDA II detector during the year 2000. The observed event rates are consistent with the expectations for atmospheric neutrinos and muons. We place upper limits on a diffuse flux of extraterrestrial electron, tau and muon neutrinos. A flux of neutrinos with a spectrum $\Phi \propto E^{-2}$ which consists of an equal mix of all flavors, is limited to $E^2 \Phi(E)=8.6 x 10^{-7} GeV/(cm^{2} s sr)$ at a 90% confidence level for a neutrino energy range 50 TeV to 5 PeV. We present bounds for specific extraterrestrial neutrino flux predictions. Several of t…

PhysicsAMANDAParticle physicsMuonPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaHadronHigh Energy Physics::PhenomenologyAstrophysics (astro-ph)FluxFOS: Physical sciencesAstronomy and AstrophysicsElectronAstrophysicsNeutrino astronomyAMANDA; Neutrino astronomy; Neutrino telescopesHigh Energy Physics::ExperimentNeutrino telescopesNeutrino astronomyNeutrinoEvent (particle physics)
researchProduct

Sensitivity of the IceCube detector to astrophysical sources of high energy muon neutrinos

2003

We present the results of a Monte-Carlo study of the sensitivity of the planned IceCube detector to predicted fluxes of muon neutrinos at TeV to PeV energies. A complete simulation of the detector and data analysis is used to study the detector's capability to search for muon neutrinos from sources such as active galaxies and gamma-ray bursts. We study the effective area and the angular resolution of the detector as a function of muon energy and angle of incidence. We present detailed calculations of the sensitivity of the detector to both diffuse and pointlike neutrino emissions, including an assessment of the sensitivity to neutrinos detected in coincidence with gamma-ray burst observatio…

PhysicsActive galactic nucleusMuonPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaDetectorAstrophysics (astro-ph)Gamma rayFOS: Physical sciencesIceCube; Neutrino astronomy; Neutrino telescopeAstronomy and AstrophysicsCosmic rayAstrophysicsAstrophysicsNeutrino telescopeIceCubeNeutrino astronomyHigh Energy Physics::ExperimentNeutrinoNeutrino astronomyGamma-ray burst
researchProduct

Flux limits on ultra high energy neutrinos with AMANDA-B10

2005

Abstract Data taken during 1997 with the AMANDA-B10 detector are searched for a diffuse flux of neutrinos of all flavors with energies above 10 16  eV. At these energies the Earth is opaque to neutrinos, and thus neutrino induced events are concentrated at the horizon. The background are large muon bundles from down-going atmospheric air shower events. No excess events above the background expectation are observed and a neutrino flux following E −2 , with an equal mix of all flavors, is limited to E 2 Φ (10 15  eV  E 18  eV) ⩽ 0.99 × 10 −6  GeV cm −2  s −1  sr −1 at 90% confidence level. This is the most restrictive experimental bound placed by any neutrino detector at these energies. Bound…

PhysicsParticle physicsAMANDAMuonPhysics::Instrumentation and DetectorsUHE neutrinosAstrophysics::High Energy Astrophysical PhenomenaSolar neutrinoHigh Energy Physics::PhenomenologyFluxAstronomy and AstrophysicsSolar neutrino problemAMANDA; Neutrino astronomy; Neutrino telescopes; UHE neutrinosNeutrino detectorNeutrino astronomyMeasurements of neutrino speedHigh Energy Physics::ExperimentNeutrinoNeutrino astronomyNeutrino telescopes
researchProduct

A method for detection of muon induced electromagnetic showers with the ANTARES detector

2012

The primary aim of ANTARES is neutrino astronomy with upward going muons created in charged current muon neutrino interactions in the detector and its surroundings. Downward going muons are background for neutrino searches. These muons are the decay products of cosmic-ray collisions in the Earths atmosphere far above the detector. This paper presents a method to identify and count electromagnetic showers induced along atmospheric muon tracks with the ANTARES detector. The method is applied to both cosmic muon data and simulations and its applicability to the reconstruction of muon event energies is demonstrated. © 2012 Elsevier B.V. All rights reserved.

Physics::Instrumentation and DetectorsAtmospheric muonsDecay productsNeutrino telescopeElectromagnetic shower identification01 natural sciences7. Clean energyneutrino telescope electromagnetic shower identification high energy muons energy reconstruction; high energy muons; neutrino telescope; electromagnetic shower identification; energy reconstructionMuon neutrinoNEUTRINO TELESCOPE010303 astronomy & astrophysicsInstrumentationEnergy reconstructionPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph][SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]DetectorAstrophysics::Instrumentation and Methods for AstrophysicsDetectorsHigh energy muonNeutrino detectorMuon colliderNeutrino astronomyFísica nuclearNeutrinoNeutrino telescope; Energy reconstruction; High energy muonsAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaFLUXNuclear and High Energy PhysicsParticle physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Charged current[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayMuon neutrinoNuclear physicsElectromagnetism0103 physical sciencesHigh energy physicsneutrino telescope electromagnetic shower identification high energy muons energy reconstructionInstrumentation and Methods for Astrophysics (astro-ph.IM)MuonANTARES010308 nuclear & particles physicsCharged particles[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]FISICA APLICADATEVPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentNeutrino astronomyNeutrino telescopesElectro-magnetic showersHigh energy muons
researchProduct

The positioning system of the ANTARES Neutrino Telescope

2012

The ANTARES neutrino telescope, located 40km off the coast of Toulon in the Mediterranean Sea at a mooring depth of about 2475m, consists of twelve detection lines equipped typically with 25 storeys. Every storey carries three optical modules that detect Cherenkov light induced by charged secondary particles (typically muons) coming from neutrino interactions. As these lines are flexible structures fixed to the sea bed and held taut by a buoy, sea currents cause the lines to move and the storeys to rotate. The knowledge of the position of the optical modules with a precision better than 10cm is essential for a good reconstruction of particle tracks. In this paper the ANTARES positioning sys…

Positioning systemDetector control systems (detector and experiment monitoring and slow-control systems architecture hardware algorithms databases)Detector modelling and simulations II (electric fieldsDetector alignment and calibration methods (lasers sources particle-beams)01 natural sciencesTiming detectorshardwareDetector alignment and calibration methods010303 astronomy & astrophysicsInstrumentationDETECTOR ALIGMENTMathematical PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSOUND[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]Orientation (computer vision)[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]DetectorAstrophysics::Instrumentation and Methods for AstrophysicsTriangulation (computer vision)particle-beams)GeodesyDETECTOR CONTROL SYSTEMDetector modelling and simulations II (electric fields charge transport multiplication and induction pulse formation electron emission etc)Física nuclearNeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical Phenomenadatabases)sources[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]pulse formationarchitecture[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesddc:500.2DETECTOR MODELLING AND SIMULATIONSDetector modelling and simulations IIalgorithmsPhysics::Geophysics0103 physical sciences14. Life underwaterInstrumentation and Methods for Astrophysics (astro-ph.IM)Cherenkov radiationetc)multiplication and inductionBuoyDetector control systems010308 nuclear & particles physicsDetector control systems (detector and experiment monitoring and slow-control systemsMooringcharge transport[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Detector alignment and calibration methods (laserselectron emissionFISICA APLICADAdetector modelling and simulations ii (electric fields; antares neutrino telescope; multiplication and induction; charge transport; pulse formation; electron emission; etc); hardware; architecture; timing detectors; detector control systems (detector and experiment monitoring and slow-control systems; algorithms; databases); sources; detector alignment; calibration.; acoustic positioning; detector alignment and calibration methods (lasers; particle-beams)
researchProduct

Zenith distribution and flux of atmospheric muons measured with the 5-line ANTARES detector

2010

The ANTARES high energy neutrino telescope is a three-dimensional array of about 900 photomultipliers distributed over 12 mooring lines installed in the Mediterranean Sea. Between February and November 2007 it acquired data in a 5-line configuration. The zenith angular distribution of the atmospheric muon flux and the associated depth-intensity relation are measured and compared with previous measurements and Monte Carlo expectations. An evaluation of the systematic effects due to uncertainties on environmental and detector parameters is presented.

[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Physics::Instrumentation and DetectorsMonte Carlo methodAtmospheric muonsFluxNeutrino telescope01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)WATER010303 astronomy & astrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)DetectorAstrophysics::Instrumentation and Methods for AstrophysicsCOSMIC-RAY CASCADES NEUTRINO TELESCOPE PERFORMANCE GENERATOR SYSTEM MODULE LIGHT WATER SITESITEMUON FLUXLIGHTddc:540Física nuclearNeutrinoAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsMODULEAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayParticle detectorCOSMIC-RAY CASCADESNuclear physics[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]depth-intensity relation0103 physical sciencesatmospheric muons; depth-intensity relation; neutrino telescope14. Life underwaterInstrumentation and Methods for Astrophysics (astro-ph.IM)ZenithRemote sensingatmospheric muonsDepth-intensity relation010308 nuclear & particles physicsneutrino telescopeAstronomy and AstrophysicsCOSMIC RAYSPERFORMANCEGENERATORMeasuring instrumentHigh Energy Physics::ExperimentUNDERWATER DETECTORSYSTEM
researchProduct

Search for Cosmic Neutrino Point Sources with Four Year Data of the ANTARES Telescope

2012

In this paper, a time-integrated search for point sources of cosmic neutrinos is presented using the data collected from 2007 to 2010 by the ANTARES neutrino telescope. No statistically significant signal has been found and upper limits on the neutrino flux have been obtained. Assuming an E ¿2 n; spectrum, these flux limits are at 1-10 ¿10¿8 GeV cm¿2 s¿1 for declinations ranging from ¿90° to 40°. Limits for specific models of RX J1713.7¿3946 and Vela X, which include information on the source morphology and spectrum, are also given.

cosmic neutrinosUNIVERSEFluxVela01 natural scienceslaw.inventionHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)lawSIGNALSABSORPTION[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]MAXIMUM-LIKELIHOOD010303 astronomy & astrophysicsATMOSPHERIC MUONSPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)COSMIC cancer database[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]ASTRONOMYneutrinosastroparticle physicsFísica nuclearNeutrinoAstrophysics - High Energy Astrophysical PhenomenaREMNANT RX J1713.7-3946Particle physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::High Energy Astrophysical PhenomenaNeutrino telescope[SDU.STU]Sciences of the Universe [physics]/Earth SciencesFOS: Physical sciencesddc:500.2Telescopeneutrinos; cosmic rays; astroparticle physicscosmic rays0103 physical sciencesPoint (geometry)ALGORITHMNeutrinosDETECTORCosmic raysUNDERWATER CHERENKOV NEUTRINO TELESCOPES010308 nuclear & particles physicsAstronomy and AstrophysicsHIGH-ENERGY PHOTONSSpace and Planetary ScienceFISICA APLICADAAstroparticle physics
researchProduct